




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、淘宝店铺:漫兮教育 数列第一轮复习说课稿第一部分:高考导航1 考纲解读2017年高考数学考纲与2016年相比较,除了在选做部分删掉“几何证明”以外,其他部分没有明显的变化,对数列这一部分要求还是:1. 了解数列概念和几种简单的表示方法(列表、图象、通项公式)2. 了解等差数列与一、二次函数的关系,等比数列与指数函数的关系。3. 理解等差,等比数列概念。4. 掌握等差,等比数列通项公式与前n项和的求法以及非等差、等比数列的几种常见的求和方法。5. 能在具体问题情境中识别等差,等比数列,并用相关的知识解决相应的问题。二近四年考情分析考点2016201520142013数列概念及表示方法全国卷 t1
2、7全国卷 t16全国卷 t17全国卷 t14等差数列及前n项和全国卷 t3全国卷 t17全国卷 t17全国卷 t17全国卷 t7全国卷 t16等比数列及前n项和全国卷 t13全国卷 t4全国卷 t17全国卷 t14全国卷 t3数列求和全国卷 t17全国卷 t17数列的综合应用全国卷 t17全国卷 t12全国卷 t16三命题分析 综合近四年全国高考卷试题来看,高考命题在本章呈现以下规律:1. 从考查题型来看:一般有2个客观题或1个解答题,其中解答题与解三角形交替考查;从分值来看,在1012分左右,试题难度以低档题为主。2. 从考查知识点来看:主要是考查两类基本数列(等差数列,等比数列)、两种数列
3、求和方法(裂项相消,错位相减的求和方法)、两类综合(与函数,不等式的综合),突出了对函数与方程,转化与化归思想,以及探究与创新能力的考查。3. 从命题的思路看主要有: 两类数列基本量的求法,同时考查了”函数与方程思想” 两类数列的定义及通项的求法,同时考查了“分类讨论与化归思想” 数列求和方法(特别是2016年17题出题角度新颖,融合了对数知识,对于考场上理智冷静的学生不难得全分,但易因理解能力不到位、考场焦虑而做不出)四命题预测通过对前四年的试题分析,可以预测,2017年在数列问题考查的重点应该是:以等差、等比数列定义、性质为背景,求比较大小,证明不等式等。给出的关系,判断、证明数列,或求通
4、项并判断性质,或前n项求和图形,图表问题,如与数阵,点列,图表结合的问题5 复习意义 数列是函数的延展,近年来的新课标高考都把数列作为必考内容来加以考查,了解高考中数列问题的命题规律,掌握高考中关于数列问题的热点题型的解法,针对性地开展数列知识的复习和训练,对于学生成绩和能力提升都具有十分重要的意义. 第二部分 等差数列定义说课稿一、教学内容分析本节内容分共分2课时,第一课时复习等差数列定义及基本量求法;第二课时复习前n项和及应用;本节课是第一课时,也是近几年高考的高频考点。通过本节内容的复习,期待学生在知识和能力上得到螺旋式上升.本节课的重点是理解等差数列定义并判断、证明;难点是转
5、化、化归思想,函数思想的应用。2、 学情分析我们普通高中学生相对基础薄弱;很多学生对于概念、公式理解不全、记忆不牢。所以帮助学生复习这部分的知识点及解题方法;熟悉数学思想是重中之重。三、教学目标知识技能目标:1. 深刻理解记忆等差数列定义、公式、性质2. 灵活运用定义、公式、判断等差数列,逐步领会方程,函数、化归思想的应用。情感目标:1.培养学生的观察、分析、归纳、表达能力。2.通过独立思考,提高学生学习的主动性、积极性;提升学生合作探究的能力四、教法学法分析 教法分析:采用先练,后演,再教的教学方法,通过学生课前预练,课堂讲演,老师补充总结的教学过程。调动学生学习的主观能动性,养成归纳总结的
6、好习惯。 学法分析:通过“复习旧知,典例分析”,让学生从定义、通项公式来理解等差数列定义的内涵和外延;体验如何将不熟悉的转化熟悉的思维过程。五、教学过程下面我从复习归纳,基础演练,典例指导,归纳升华,信息反馈五个方面重点说一下教学过程:1【复习归纳】 知识点1等差数列1定义:an1and(常数)(nn*)2通项公式:ana1(n1)d,anam(nm)d.3前n项和公式:snna1.4a,b的等差中项a.知识点2等差数列的性质已知数列an是等差数列,sn是其前n项和通项公式的推广:+(n-m)d (n,mn*).若m,n,p,q,k是正整数,且mnpq2k, 则amanapaq2ak. am,
7、amk,am2k,am3k,仍是等差数列,公差为kd.若an,bn是等差数列,则panqbn是等差数列数列sm,s2msm,s3ms2m,也是等差数列设计意图回顾知识点,有助于学生进一步理解等差数列定义、性质;同时也为后面教学目标的完成奠定坚实的基础。2.【基础演练】1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列()(2)等差数列an的单调性是由公差d决定的()(3)等差数列的前n项和公式是常数项为0的二次函数()(4).等差数列中,若amanapaq则,m+n=p+q()2(必修5p38
8、例1(1)改编)已知等差数列-8,-3,2,7,则该数列的第100项为_3(必修5p46习题2.3a组t5改编)在100以内的正整数中有_个能被 6整除的数.4(2015·全国卷)设sn是等差数列的前n项和, 若则=()a.5 b.7c.9 d.115. (2015·安徽高考)已知数列中,(,则数列的前9项和等于_.设计意图 基础演练 ,使学生进一步理解、巩固知识点,让学生体验学以致用的乐趣,引起学生的探究兴趣,激发学生求知欲望.3.【典例指导】 探究问题一:已知数列前n项和为满足下列条件,其中是等差数列的有 () a b c d 解题关键:熟悉等差数列定义及性质设计意图
9、: 多角度考查等差数列定义内涵,同时考查了定义的严谨性,培养学生思维严密性。 通过 求,进而提出结论:“若是关于n的常数为零的二次函数,则为等差数列”,培养学生归纳总结意识。已知每项均大于零的数列中,首项且前n项和满足 (nn*且n2),则=_.规范解答:由已知得,所以是以1为首项,2为公差的等差数列,故,所以解题关键:式子变形设计意图:通过式子,从定义上识别等差数列,训练学生的化简变形能力,增强学生的转化、化归意识。如图,(2016浙江)如图,点列an、bn分别在某锐角的两边上,且|=|,anan+1,nn*,|=|,bnbn+1,nn*,(pq表示点p与q不重合)若=|,为的面积,则(
10、160; ) a 是等差数列 b是等差数列 c是等差数列 d是等差数列规范解答:设锐角顶点为c, 设,则,作,则,于是易知是关于n的一次函数,所以是等差数列 解题关键:设锐角顶点为c;抓住构建等差数列设计意图:1.通过图形,从通项公式上识别等差数列,考查在具体问题情境中运用所学知识分析问题,解决问题能力。2.通项公式的应用,体现函数思想。3.通过解题过程可以得出结论:“等差数列乘以常数仍然是等差数列”,培养 学生归纳总结及表达能力(2014·全国卷)已知数列an的前n项和为sn,a11,an0,anan1sn1,
11、其中为常数证明:an2an;是否存在,使得an为等差数列?并说明理由证明:由题设知anan1sn1,an1an2sn11,两式相减得an1(an2an)an1,由于an10,所以an2an.由题设知a11,a1a2s11,可得a21. 由知,a31,令2a2a1a3,解得4.故an2an4,由此可得a2n1是首项为1,公差为4的等差数列,a2n1=4n3;a2n是首项为3,公差为4的等差数列,a2n4n1.所以an2n1,an1an2,因此存在4,使得数列an为等差数列解题关键:先通过对式子化简变形得到第一问,进而得到奇数项、偶数项均成等差数列,再运用两个通项公式归纳出整个数列为等差数列 设计
12、意图:考查(奇数、偶数项成等差数列)等差数列定义的外延,及(数列中的2n-1项是奇数项中的第n项)通项公式的内涵;培养学生的化简变形,转化、化归能力。4. 【归纳升华】1、 双基归纳:知识:理解定义内涵与外延,重点从定义,通项公式来识别等差 数列 方法(等差数列判断): 1.定义;2通项公式; 3.等差中项4;前n项和公式二、能力归纳:分析解决问题能力,化简变形能力,归纳能力三、思想归纳:函数思想 化归思想设计意图 由学生对探究的四个问题从双基、能力、思想三个方面进行总结,不但能够达到将本节课知识引申和升华的目的。同时也培养学生归纳、概括和语言表达能力5. 【信息反馈】 为了及时了解学生对知识
13、的掌握情况,根据学生的自然情况分层设计了两组作业:通过作业的情况,可以进一步反应学生的学习情况。设计意图通过课后练习,使学生对知识点、方法达到巩固目的,竟而达到高考要求,并为下节课做准备.六课后反思,本节课在典例指导环节上。我采用:以学生为中心,通过学生讲演过程、老师适时、有针对性的指导;帮助学生归纳,总结。这样我们既可以发现学生在学习中存在问题,使自己的教学更有针对性,又可以使学生在训练中突破重难点,提高提升他们自己的能力。等差数列a组跨越本科线1.设an(n1)2,bnn2n(nn*),则下列命题中不正确的是()aan1an是等差数列 bbn1bn是等差数列canbn是等差数列 danbn
14、是等差数列2(2016·佛山模拟)已知等差数列an满足a23,snsn351(n3),sn100,则n的值为()a8 b9 c10 d11 3在等差数列中,则值为 () a 20 b 22 c 24 d -8 4(2015·烟台模拟)等差数列an与bn的前n项和分别为sn与tn,若,则()a. b. c. d.52015·陕西高考)中位数为1 010的一组数构成等差数列,其末项为2015,则该数列的首项为_6 (2014·江西高考)在等差数列an中,a17,公差为d,前n项和为sn,当且仅当n8时sn取得最大值,则d的取值范围为_7 已知等差数列an的前n项和为sn,且s1010,s2030,则s30_.,8,设等差数列an的前n项和为sn,已知前6项和为36,最后6项的和为180,sn324(n6),求数列an的项数及a9a10.9已知数列an的前n项和为sn且满足an2sn·sn10(n¡Ý2),a1.(1)求证:是等差数列; (2)求an的表达式b组名校必刷题10(2016·福州模拟)在等差数列an中,a12 016,其前n项和为sn.若2,则s2 016的值等于()a2 016 b2 015 c2 014 d2 01311.(2016·唐山模拟)各
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨国企业境外工程劳务派遣及劳动纠纷解决协议
- 镍氢电池制造工艺优化补充协议
- 少数民族夫妻忠诚习惯法融合协议执行与效果评价及优化
- 药品MAH委托生产生产环境监测与改善服务协议
- 艺术院校毕业生实习与就业合作协议
- 生物实验动物手术室租赁与科研资源共享协议
- 机场航站楼施工质量整改及安全监管协议
- 2025年五年级语文下册教学评估计划
- 酒店业废物分类管理与减量计划
- 2025年电子控制四轮驱动装置项目提案报告
- 吉林长春历年中考语文现代文阅读真题26篇(截至2024年)
- 互联网驱动的保险创新
- 2025年汉中汉源电力集团有限公司招聘笔试参考题库含答案解析
- 卸妆洁面知识培训课件
- 质量投诉与改进管理制度
- 2025年甘肃农垦集团招聘笔试参考题库含答案解析
- 光伏电站继电保护基本原理和管理规范
- 山东省济宁市2022-2023学年高一7月期末生物试题(解析版)
- 住宅小区拆除施工方案
- 【MOOC】通信原理-电子科技大学 中国大学慕课MOOC答案
- 我国合同能源管理现状
评论
0/150
提交评论