版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.高中应用题专题复习例1建筑一个容积为48米3,深为3米的长方体蓄水池,池壁每平方米的造价为a元,池底每平方米的造价为2a元。把总造价y表示为底的一边长x米的函数,并指出函数的定义域。解:容积=底面积×高= 48 Þ 底面积×3 = 48 Þ 底面另一边长:m = 池壁造价=池壁面积×a = 2(3x + 3m )×a = 6( x +)a = 6(x +)a 池底造价=底面积×2a =16×2a = 32a y = 6(x +)a + 32a ( x > 0 )x2x例2. 有根木料长为6米,要做一个如图的
2、窗框,已知上框架与下框架的高的比为12,问怎样利用木料,才能使光线通过的窗框面积最大(中间木档的面积可忽略不计. 解:如图设x, 则竖木料总长= 3x + 4x = 7x, 三根横木料总长= 6 -7x 窗框的高为3x,宽为 即窗框的面积 y = 3x ·= -7x2 + 6x ( 0 < x <) 配方:y = ( 0 < x < 2 ) 当x =米时,即上框架高为米、下框架为米、宽为1米时,光线通过窗框面积最大.3利润问题:(1)利润=收入-成本 (2)利润=单位利润×销售量例3. 将进货单价为8元的商品按单价10元销售,每天可卖出100个。若该
3、商品的单价每涨1元,则每天销售量就减少10个。如何确定该商品的销售单价,使利润最大?分析:(1)每出售一个商品的利润=销售单价-进货单价= 10- 8 = 2 (2)以单价10元为基础:单价每次涨1元,当涨了x元(即可看成涨了x次)时,则每出售一个商品的利润= 2+ x元, 销售量为100 -10x个 每个商品的利润y = (2 + x )( 100 -10x ) = -10x2 + 80x + 200 = -10( x - 4)2 + 360即当x = 4时,y有最大值360 当每个商品的单价为14元时,利润最大.4与增长率相关的问题:要点增长率为正:原产量×(1 + 增长的百分率
4、)经过x年 增长率为负:原产量×(1 - 增长的百分率)经过x年 例5. 一种产品的年产量原来是a件,在今后m年内,计划使年产量每年比上一年增加p%. 写出年产量随经过年数变化的函数关系式.解:设经过x年后,年产量为y, 则y = a( 1 + p%)x 例9. 画一个边长2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,求:(1) 第10个正方形的面积(2) 这10个正方形的面积的和解:(1)设an表示各正方形的面积 a1 = 22 = 4, a2 = ()2, a3 = 42 = 8 an是公比为2的等比
5、数列第10个正方形的面积a10 = a1q9 = 4×29 = 2048 (厘米2)(2)这10个正方形的面积和 (厘米2)例10一个球从100米高处自由落下,每次着地后又回到原高度的一半再落下. 当它第10次着地时,共经过了多少米?解:设球落下的高度依次为a1, a2, , a10 . a1 = 100, a2 = 50, a3 = 25 an是公比为的等比数列则球第10次落下时落下的路程为本球共经过的路程为S = 2S10 - 100 300 (米)一 解析几何中的应用题例16抛物线拱桥顶部距水面2米时,水面宽4米. 当水面下降1米时,水面的宽是多少?24xy0解:如图建立直角坐
6、标系,则抛物线方程为x2 = -2py依题意知:x = 2时,y = -2代入方程得p = 1 即抛物线方程为 x2 = -y, 当水面下降1米时,y = -3 Þ x = 水面宽为2x =3.5 (米)BAOyxF1F2··例17我国发射的第一颗人造地球卫星的运行轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面439千米,远地点距地面2384千米,地球半径大约为6371千米,求卫星的轨道方程.解:如图建立坐标系 a -c = |OA| - | OF2| = |F2A| = 6371 + 439 = 6810a + c = |OB| + |OF2| = |F
7、2B| = 6371 + 2384 = 8755 a = 7782.5, c = 972.5 Þ b2 = 7721.52 即卫星的轨道方程是:步例18在相距1400米的A、B两哨所,听到炮弹爆炸声的时间相差3秒,已知声速是340米/秒,炮弹爆炸点在怎样的曲线上?并求出轨迹方程.BAOyxM解:设爆炸t秒后A哨所先听到爆炸声,则B哨所t + 3秒后听到爆炸声,爆炸点设为M 则 |MA| = 340t, |MB| = 340( t + 3 ) = 340t + 1020 两式相减:|MA| - |MB| = 1020 (|AB| = 1400> 1020) 炮弹爆炸点的轨迹是以A
8、、B为焦点的双曲线以AB为x轴、AB中点为原点建立直角坐标系(如图) A(-700, 0 ), B( 700, 0 ) Þ c = 700且 2a = 1020 Þ a = 510 Þ b2 =229900 炮弹爆炸的轨迹方程是: ( x > 0 )例19如图,某灾区的灾民分布在一个矩形地区,现要将救灾物资从P处紧急运往灾区. P往灾区有两条道路PA、PB,且PA=110公里,PB=150公里,AB= 50公里. 为了使救灾物资尽快送到灾民手里,需要在灾区划分一条界线,使从PA和PB两条路线到灾民所在地都比较近. 求出该界线的方程.MPAB解:要使沿PA、P
9、B两条线路到救灾地点都比较近,有三种情况:(1)沿PA线路 (2)沿PB线路 (3)沿PA、PB线路都相同故分界线以第(3)种情况划分:即 |PA| + |MA| = |PB| + |MB| Þ 110 + |MA| = 150 + |MB| |MA|-|MB| = 40, 即知分界线是以A、B为焦点的双曲线 AB = 50 Þ 2c = 50 Þ c = 25, 2a = 40 Þ a = 20 Þ b2 = 225若以AB为x轴、AB的中点为原点建立直角坐标系则分界线方程是: (在矩形内的一段)注意:确定分界线的原则是:从P沿PA、PB到分
10、界线上点的距离.练习:1某森林出现火灾,火势正以每分钟的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元(1)设派x名消防队员前去救火,用t分钟将火扑灭,试建立与的函数关系式;(2)问应该派多少消防队员前去救火,才能使总损失最少?2有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定。大桥上的车距d(m)与车速v(km/h)和车长l(m)的关系满足:(k为正的
11、常数),假定车身长为4m,当车速为60(km/h)时,车距为2.66个车身长。(1) 写出车距d关于车速v的函数关系式;(2) 应规定怎样的车速,才能使大桥上每小时通过的车辆最多?3 电信局根据市场客户的不同需求,对某地区的手机套餐通话费提出两种优惠方案,则两种方案付电话费(元)与通话时间(分钟)之间的关系如图所示(实线部分)(MN平行CD)(1) 若通话时间为两小时,按方案A,B各付话费多少元?(2) 方案B从500分钟以后,每分钟收费多少元?(3) 通话时间在什么范围内,方案B比方案A优惠?5某学校要建造一个面积为10000平方米的运动场。如图,运动场是由一个矩形ABCD和分别以AD、BC
12、为直径的两个半圆组成。跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮。已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元(1) 设半圆的半径OA= (米),试建立塑胶跑道面积S与的函数关系S() (2) 由于条件限制,问当取何值时,运动场造价最低?(精确到元)10某厂家拟在2008年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元(为常数),如果不搞促销活动,则该产品的年销售量是1万件。已知2008年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括
13、固定投入和再投入两部分资金,不包括促销费用)(1)将2008年该产品的利润y万元表示为年促销费用万元的函数;(2)该厂家2008年的促销费用投入多少万元时,厂家的利润最大?13某民营企业生产A、B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图甲,B产品的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元) 甲 乙(1)分别将A、B两种产品的利润表示为投资(万元)的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?16某厂家拟在2009年举行促销活动,经调查
14、测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元满足(为常数),如果不搞促销活动,则该产品的年销售量是1万件. 已知2009年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用)(1)将2009年该产品的利润y万元表示为年促销费用万元的函数;(2)该厂家2009年的促销费用投入多少万元时,厂家的利润最大?17某商场在促销期间规定:商场内所在商品按标价的80%出售;同时,当顾客在该商场内消费一定金额后,按以下方案获得相应金额的奖券:消费金额(元)的范围获得
15、奖券的金额(元)3060100130根据上述促销方法,顾客在该商场购物可以获得双重优惠。例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×0.2+30=110(元)。设购买商品得到的优惠率=,试问 (1)购买一件标价为1000元的商品,顾客得到的优惠率是多少? (2)对于标价在500,800(元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?18如图所示,将一矩形花坛扩建成一个更大的矩形花园,要求B在上,D在上,且对角线过C点,已知AB=3米,AD=2米,(1)要使矩形的面积大于32平方米,则的长应在什么范围内?(2)当的长度是多少时,矩形的
16、面积最小?并求最小面积;(3)若的长度不少于6米,则当的长度是多少时,矩形的面积最小?并求出最小面积。 19已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.高考资源网(1)当9天购买一次配料时,求该厂用于配料的保管费用P是多少元?高考资源网(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使
17、平均每天支付的费用最少?高考资源网20假设A型进口车关税税率在2003年是100%,在2008年是25%,在2003年A型进口车每辆价格为64万元(其中含32万元关税税款)(1)已知与A型车性能相近的B型国产车,2003年每辆价格为46万元,若A型车的价格只受关税降低的影响,为了保证2008年B型车的价格不高于A型车价格的90%,B型车价格要逐年等额降低,问每年至少下降多少万元?(2)某人在2003年将33万元存入银行,假设银行扣利息税后的年利率为1.8%(5年内不变),且每年按复利计算(上一年的利息计入第二年的本金),那么5年到期时这笔钱连本带利息是否一定够买按(1)中所述降价后的B型车一辆
18、?(参考数据:1.01851.093)参考答案1解:(1),5分(2)总损失为y,则y灭火劳务津贴车辆、器械装备费森林损失费y125tx100x60(500100t)9分11分13分当且仅当,即x27时,y有最小值3645014分2因为当时,所以, 4分 6分设每小时通过的车辆为,则即 12分xOy,当且仅当,即时,取最大值答:当时,大桥每小时通过的车辆最多16分3设通话x分钟时,方案A,B的通话费分别为(1)当x=120时 =116元 =168元若通话时间为两小时,方案A付话费116元,方案B付话费168元(2)当-=0.3
19、;方案B从500分钟以后,每分钟收费0.3 元(3) 当 由得综合:通话时间在内方案B较优惠。5解: (1)塑胶 跑道面积 (2) 设运动场造价为6(1)依题意,;又售价不能低于成本价,所以所以,定义域为(2),化简得: 解得 所以x的取值范围是10解(1)由题意可知当时,(万件)即2分 每件产品的销售价格为 5分2008年的利润 8分(2)(万元)12分答:该厂家2008年的促销费用投入3万元时,厂家的利润最大,最大为21万元14分11()因为,所以的面积为()(2分) 设正方形的边长为,则由,得,解得,则(6分) 所以,则 (9分) ()因为,所以(13分) 当且仅当时取等号,此时.所以当长为时,有最小值1(15分)13(1) 设投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元由题设由图知f(1)=,故k1= 又 从而7分 (2) 设A产品投入x万元,则B产品投入10-x万元,设企业利润为y万元 令则当答: 当A产品投入3.75万元,则B产品投入6.25万元,企业最大利润为万元 15分16(1)由题意可知,当时,即,每件产品的销售价格为元.2009年的利润 8分(2)时,.,当且仅当,即时,.15分答:该厂家2009年的促销费用投入3万元时,厂家的利润最大,最大为21万元.17(1)购买一件标价为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冀少版八年级生物上册第三单元第二节根对水分的吸收课件
- 《妈妈睡了》教学设计
- 《学习探究-计算机硬件及其故障》教案
- 印刷工程监理管理与评标规范
- 定州市公园环境卫生维护办法
- 知识产权定向合作协议
- 电力工程师解除聘用合同模板
- 纺织品业保密承诺书样本
- 水利工程保险合同范本
- 深圳汽车4S店租赁合同模板
- 2024-2025学年人教版七年级地理上学期 期中知识清单:第一章 地球
- 宠物饲料购销合同模板
- Unit4《This is my friend》-2024-2025学年三年级上册英语单元测试卷(译林版三起 2024新教材)
- 2024年江苏南京航空航天大学招聘36人历年高频500题难、易错点模拟试题附带答案详解
- 2024-2025学年秋季第一学期1530安全教育记录(第一、二、三周安全教育记录表)
- 第三单元达标练习(单元练习)2024-2025学年统编版语文一年级上册
- 小学语文“跨学科学习任务群”内涵及解读
- 绿城物业服务协议书范本2024年
- 血标本采集法并发症
- DB15-T 3651-2024 光伏项目防沙治沙技术规程
- 2024年安全员C证考试题库附答案
评论
0/150
提交评论