第十四章原子物理@_第1页
第十四章原子物理@_第2页
第十四章原子物理@_第3页
第十四章原子物理@_第4页
第十四章原子物理@_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十四章 原子物理第1课的散 量子论初步(光的粒子性)基础知识 一、光电效应 1光电效应现象:在光(包括不可见光)照射下物体发射出电子的现象叫光电效应现象;所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。2光电效应规律 (1)任何一种金属都有一个极限频率,入射光必须大于这个极限频率才能产生光电效应 (2)光电子的最大初动能与入射光的强度(数目)无关,只随着入射光的频率增大而增大 (3)当入射光的频率大于极限频率时,保持频率不变,则光电流的强度与入射光的强度成正比 (4)从光照射到产生光电流的时间不超过109s,几乎是瞬时的说明:(1)光电效应规律“光电流的强度与入射光的强度成正比”中

2、“光电流的强度指的是光电流的最大值(亦称饱和值),因为光电流未达到最大值之前,其值大小不仅与入射光的强度有关,还与光电管两极间的电压有关只有在光电流达到最大以后才和入射光的强度成正比 (2)这里所说“入射光的强度”,指的是单位时间内入射到金属表面单位面积上的光子的总能量,在入射光频率不变的憎况下,光强正比于单位时间内照射到金属表面上单位面积的光子数但若换用不同频率的光照射,即使光强相同,单位时间内照射到金属表面单位面积的光子数也不相同,因而从金属表面逸出的光电子数也不相同,形成的光电流也不同 二、光子说1经典的波动理论解释不了光电效应规律中(1)极限频率、(2)最大初动能、(4)瞬时性(1)极

3、限频率0:光的强度由光波的振幅A决定,跟频率无关。只要入射光足够强(或照射时间足够长),就应该能发生光电效应但事实并非如此(2)光电子的最大初动能:只与光的频率有关而与光的强度无关(3)解释不了光电效应发生的时间之短:10-9s ; 能量积累是需要时间的2光子说却能很好地解释光电效应光子说认为: (1)空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子 光传播规律 光由能量子(光子)组成 (2)光子的能量跟它的频率成正比,即 Ehhc (式中的h叫做普朗克恒量,h661034J·s)爱因斯坦利用光子说解释光电效应过程:(一个光子的能量只能被一个电子吸收,一对一关系)入射光照到

4、金属上,有些光子被电子吸收,有些没有被电子吸收;吸收了光子的电子(a、b、c、e、g)动能变大,可能向各个方向运动;有些电子射出金属表面成为光电子(b、c、g),有些没射出(a、e);射出金属表面的电子克服金属中正电荷引力做的功也不相同;只有从金属表面直接飞出的光电子克服正电荷引力做的功最少(g),飞出时动能最大。解释了最大初动能.abcdefg如果入射光子的能量比这个功的最小值还小,那就不能发生光电效应。这就解释了极限频率的存在;由于光电效应是由一个个光子单独引起的,因此从有光照射到有光电子飞出的时间与照射光的强度无关,几乎是瞬时的。这就解释了光电效应的瞬时性。(3)爱因斯坦光电效应方程:E

5、k=hW(Ek是光电子的最大初动能;W是逸出功:即从金属表面直接飞出的光电子克服正电荷引力所做的功,也称电离能 )说明:(1)光电效应现象是金属中的自由电子吸收了光子的能量后,其动能足以克服金属离子的引力而逃逸出金属表面,成为光子电子不要将光子和光电子看成同一粒子(2)对一定的金属来说,逸出功是一定的照射光的频率越大,光子的能量越大,从金属中逸出的光电子的初动能就越大如果入射粒子的频率较低,它的能量小于金属的逸出功,就不能产生光电效应,这就是存在极限频率的原因本节总结:要注意区分一些主要的概念:光的强度、光子的能量、光电子的最大初动能、光电流的强度等入射光的强度是和光电流的强度联系着的,每秒发

6、射的光子数决定了每秒逸出的光电子数;入射光的频率是和光电子的最大初动能联系着的,每个光子的能量Eh。决定了每个光电子的最大初动能mvm2决定了每个光电子的最大初动能 光电效应也说明了光具有粒子性。光子电子电子光子散射前散射后三康普顿效应光子在介质中和物质微粒相互作用,可能使得光的传播方向转向任何方向(不是反射),这种现象叫做光的散射。在研究电子对X射线的散射时发现:有些散射波的波长比入射波的波长略大。康普顿认为这是因为光子不仅有能量,也具有动量。实验结果证明这个设想是正确的。 因此康普顿效应也证明了光具有粒子性。按照经典电磁理论推理光波在散射前后波长应该不变,事实上变了。经典理论与实验事实又出

7、现了矛盾。光的电磁理论再次遇到困难。康普顿用光子的概念解释这种康普顿效应,再次证明了爱因斯坦光子学说的正确性。X射线光子与晶体中的电子碰撞时:X光子要把一部分动量转移给了电子,光子的动量变小,所以波长会增大。根据能量守恒和动量守恒求解出散谢光波波长的变化值(理论与实验完全相符合) 具有能量(光电效应) E=h证明(X射线)光子 (E和P是粒子性的表现;和是波动性的表现) 两式说明光具有波、粒二象性。 具有动量(康普顿效应) (通过普朗克常量h架起波、粒二象性的桥梁)推理过程:光子说:中一个光子的能量E=h 质量爱狭义相对论中:质能方程E=mc2 光子的动量 动量的定义:动量=质量×速

8、度 p=m×v=m×c 速度=波长×频率 即:四、光的波粒二象性(1)干涉、衍射和偏振表明光是一种波;光电效应和康普顿效应表明光是一种粒子;现代物理学认为光具有波粒二象性。(2)大量光子的传播规律体现为波动性;频率低、波长长的光,其波动性越显著(3)个别光子、与物质作用时体现为粒子性;频率越高、波长越短的光,其粒子性越显著(4)光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性;光既具有波动性,又具有粒子性,为说明光的一切行为,只能说光具有波粒二象性说明:光的波粒二象性可作如下解释:说波是一种概率波,对大量光子才有意义。说粒子,是指其不连续性,是一

9、份能量。(1)既不可把光当成宏观观念中的波,也不可把光当成微观观念中的粒子(2)大量光子产生的效果往往显示出波动性,个别光子产生的效果往往显示出粒子性;频率超低的光波动性越明显,频率越高的光粒子性越明显(3)光在传播过程中往往显示波动性,在与物质作用时往往显示粒子性(4)由光子的能量E=h,光子的动量看出,光的波动性和粒子性并不矛盾:表示粒子性的能量和动量的计算式中都含有表示波的特征的物理量频率、波长(5)由以上两式和波速公式c=还可以得出:E = p c(6)对干涉现象理解:对亮条纹的解释:波动说:同频率的两列波到达亮纹处振动情况相同;粒子说:光子到达的几率大的地方。对暗条纹的解释:波动说:

10、同频率的两列波到达暗纹振动情况相反;粒子说:光子到达的几率小的地方。五、物质波(德布罗意波)物质分为两大类:实物和场是物质存在的两种方式。既然作为场的光有粒子性,那么作为粒子的电子、质子等实物是否也具有波动性?德布罗意由光的波粒二象性的思想推广到微观粒子和任何运动着的物体上去,得出物质波(德布罗意波)的概念:任何一个运动着的物体都有一种波与它对应,该波的波长=h/p。人们又把这种波叫做德布罗意波。物质波也是概率波。六、.氢原子中的电子云对于宏观质点,只要知道它在某一时刻的位置和速度以及受力情况,就可以应用牛顿定律确定该质点运动的轨道,算出它在以后任意时刻的位置和速度。对电子等微观粒子,牛顿定律

11、已不再适用,因此不能用确定的坐标描述它们在原子中的位置。玻尔理论中说的“电子轨道”实际上也是没有意义的。更加彻底的量子理论认为,我们只能知道电子在原子核附近各点出现的概率的大小。在不同的能量状态下,电子在各个位置出现的概率是不同的。如果用疏密不同的点子表示电子在各个位置出现的概率,画出图来,就像一片云雾一样,可以形象地称之为电子云。七、能级卢瑟福提出的原子的核式结构模型。认为电子绕核做圆周运动,好比地球绕太阳做圆周运动。研究表明:卢瑟福的核式结构模型和经典电磁理论有矛盾:按照经典电磁理论:电子绕核做圆周运动会向外辐射同频率的电磁波,能量将减小,原子将会不稳定;电子旋转半径减小的同时,频率将增大

12、,因此辐射的电磁波频率也应该是连续变化的。大量原子的发光光谱应该是连续光谱。事实上原子是稳定的;原子辐射的电磁波的频率也是不变的,原子发光的光谱是线状谱。为解决这个矛盾,玻尔将量子理论引入原子结构理论,大胆提出了三条假设,创建了玻尔原子模型。内容:玻尔认为:围绕原子核运动的电子轨道半径只能是某些分立的数值,这种现象叫轨道量子化;不同的轨道对应着不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的;原子在不同的状态中具有不同的能量,所以原子的能量也是量子化的.玻尔的原子模型(引入量子理论,量子化就是不连续性,整数n叫量子数) 玻尔补充三条假设能量定态假设:-原子只能处

13、于一系列不连续的能量状态(称为定态) 中, 在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫定态。(本假设是针对原子稳定性提出的)理解要点:即不同的轨道对应着不同的能量状态,这些状态中原子是稳定的,不向外辐射能量.说明:这一说法和事实是符合得很好的,电子并没有被库仑力吸引到核上,就像行星绕着太阳运动一样。这里所说的定态是指原子可能的一种能量状态,有某一数值的能量,这些能量包含了电子的动能和电势能的总和。原子跃迁假设:-原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出) () 辐射(吸收)光子的能量为hf

14、E初-E末原子在不同的状态具有不同的能量,从一个定态向另一个定态跃迁时要辐射或吸收一定频率的光子,该光子的能量,等于这两个状态的能级差.氢原子跃迁的光谱线问题一群氢原子可能辐射的光谱线条数为。 (大量)处于n激发态原子跃迁到基态时的所有辐射方式轨道、能量量子化假设:-定态不连续,能量和轨道也不连续;(即原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子所处的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)即轨道是量子化的,只能是某些分立的值.对氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是:轨道量子化rn=n2r1(n1

15、,2.3) r1=0.53×10-10m 能量量子化: E1=13.6eV这些能量值叫能级.能量最低的状态(量子数n=1)叫基态,其他状态叫激发态。 根据玻尔理论画出了氢原子的能级图。说明氢原子各定态的能量值为电子绕核运动的动能Ek和电势能Ep的代数和;当取无穷远处电势能为零时,各定态的电势能均为负值.玻尔理论的成功之处:在于引入了量子化的概念,但因保留了经典的原子轨道,故有关氢原子的计算仍应用经典物理的理论.对电子绕核运动的轨道半径、速度、周期、动能、电势能等的计算,是牛顿运动定律、库仑定律、匀速圆周运动等知识的综合应用.原子的跃迁条件只适用于光子和原子作用而使原子在各定态之间跃

16、迁的情况,对下述两种情况,则不受此条件限制:当光子与原子作用而使氢原子电离,产生离子和自由电子时,原子结构被破坏,因而不遵守有关原子结构的理论.如基态氢原子的电离能为13.6eV,只要大于或等于13.6eV的光子都能被处于基态的氢原子吸收而发生电离.氢原子电离所产生的自由电子的动能等于入射光子的能量减去电离能.实物粒子和原子作用而使原子激发或电离,是能过实物粒子和原子碰撞来实现的.在碰撞过程中,实物粒子的动能可以全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两个能级差值,就可以使原子受激发而跃迁到较高的能级;当入射粒子的动能大于原子在某能级的电离能时,也可以使原子电离.明确:原

17、子的能量增加是因为电子增加的电势能大于电子减少的动能;反之原子的能量减少是因为电子减少的电势能大于电子增加的动能。明确:一个原子可以有许多不同的能量状态和相应的能级,但在某一时刻,一个原子不可能既处于这一状态也处于那一状态,如果有大量的原子,氢光谱的观测就说明了这一事实,它的光谱线不是一个氢原子发出的,而是不同的氢原子从不同的能级跃迁到另一些不同能级的结果。本节总结:玻尔的原子模型是把卢瑟福的学说和量子理论结合,以原子的稳定性和原子的明线光谱作为实验基础而提出的。认识玻尔理论的关键是从“不连续”的观点理解电子的可能轨道和能量状态、玻尔理论对氢光谱的解释是成功的,但对其他光谱的解释就出现了较大的

18、困难,显然玻尔理论有一定的局限性。2.光子的发射和接收:原子处于基态时最稳定。处于激发态时会自发地向较低能级跃迁,经过一次或几次跃迁到达基态。跃迁时以光子的形式放出能量。所放出光子的频率满足:h=Em-En 原子吸收了光子后从低能级跃迁到高能级,或者被电离。处于基态或较低激发态的原子只能吸收两种光子:一种是能量满足h=Em-En的光子,一种是能量大于该能级电离能的光子。3.原子光谱:在人们了解原子结构以前,就发现了气体光谱。和白光形成的连续光谱不同,稀薄气体通电后发出的光得到的光谱是不连续的几条亮线,叫做线状谱。因为各种原子的能级是不同的,它们的线状谱也就不会完全相同。因此把这些线状谱叫做原子

19、光谱。利用原子光谱可以鉴别物质,分析物体的化学组成。玻尔理论能够很好地解释氢的原子光谱。根据h=Em-En计算出的频率跟实验中观察到的线状谱对应的频率恰好相同。4.玻尔理论的局限性:玻尔理论成功地解释了氢光谱的规律,它的成功是因为引进了量子理论(轨道量子化、能量量子化)。但用它解释其它元素的光谱就遇到了困难,它的局限性是由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等)。5.量子力学:为了解决这种困难,需要建立更加彻底的量子理论,这就是量子力学。在量子力学种所谓电子绕核运行的轨道,实际上只是电子出现概率密度较大的位置。如果用疏密不同的点表示电子在各个位置出现的概率,画出的图形叫做

20、电子云。规律方法 1.正确理解光电效应规律 2应用光子说解决实际问题3.氢原子跃迁及光谱线的计算实际上公式hv=E初-E终只适用于光子和原子作用而使原子在各定态之间跃迁的情况,而对于光子与原子作用使原子电离或实物粒子与原子作用而使原子激发的情况(如高速电子流打击任何固体表面产生伦琴射线,就不受此条件的限制。这是因为原子一旦电离,原子结构就被破坏,因而不再遵守有关原子结构的理论。 实物粒子与原子碰撞的情况,由于实物粒子的动能可全部或部分地为原子吸收, 所以只要入射粒子的动能大于或等于原子某两定态能量之差,都有可能使原子受激发而向高能级跃迁,但原子所吸收的能量仍不是任意的,一定等于原子发生跃迁的两

21、个能级间的能量差。(1)从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞。(2)原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。(如在基态,可以吸收E 13.6eV的任何光子,所吸收的能量除用于电离外,都转化为电子的动能)。4.氢原子跃迁的能量规律:核外电子绕核旋转可看作是以原子核为中心的匀速圆周运动,其向心力由核的库仑引力提供.氢原子的能级图n E/eV 01 -13.62 -3.43 -1.514 -0.85E1E2E3动 能:Ekn=Ek1 由于(对氢原子) 电势能:EPn=EP1E

22、P1=E1Ek1=13.613.6=27.2 eV总能量:En=Ekn+EPnE1=-13.6 eV(½Ep=Ek,,Ep=2Ek)电子从无穷远移近原子核,电场力做正功,电势能减少为负值;当原子吸收光子,从较低能级(E1)跃迁到较高能级(E2)时,即n增大时,原子的总能量(E)增加,电子的电势能(EP)增加,而动能(Ek)减少,且Ek1+EP1+hv=Ek2+EP2当原子放出光子从较高能级(E2)跃迁到较低能级(E1)时,原子的总能减少, 电子的电势能减少,而动能增加,且Ek1+EP1-hv=Ek2+EP2右上图中三个光子的能量关系为 E1 = E2 + E3;频率关系为1=2+3;

23、而波长关系为翰林汇翰林汇翰林汇翰林汇 原子核第1课散 原子核基础知识 一、原子的核式结构模型1、汤姆生的“枣糕”模型(1)1897年汤姆生发现了电子,使人们认识到原子有复杂结构,揭开了研究原子的序幕 (2)“枣糕”模型:原子是一个球体,正电荷均匀分布在整个球内,电子像枣糕里的枣子一样镶嵌在原子里2、卢瑟福的核式结构模型19091911年,英国物理学家卢琴福和他的助手们进行了粒子散射实验(1)实验装置如图所示:如图所示,用粒子轰击金箔,由于金原子中的带电微粒对粒子有库仓力作用,一些粒子穿过金箔后改变了运动方向,这种现象叫做粒子散射.荧光屏可以沿着图中虚线转动,用来统计向不同方向散射的粒子数目.全

24、部设备装在真空中.(2)粒子散射实验结果:绝大多数粒子穿过金箔后基本上仍沿原来的方向前进,但有少数粒子发生了较大的偏转.,极少数偏转角超过900,有的甚至被弹回,偏转角几乎达到1800(3)现象解释:认为原子中的全部正电荷和几乎所有质量都集中到一个很小的核上,由于核很小,大部分粒子穿过金箔时都离核很远,受到的库仑力很小,它们的运动几乎不受影响.只有少数粒子从原子核附近飞过,明显受到原子核的库仑力而发生大角度偏转.核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转原子核所带的单位正电荷数等于核外的电子数,所以整

25、个原子是呈电中性的电子绕着核旋转所需的向心力就是核对它的库仑引力说明 核式结构模型的实验基础是粒子散射实验,原子核是多么小,原子内部是多么“空”.从粒子散射的实验数据,估计原子核半径的数量级为10-14m10-15m,而原子半径的数量级是10-10m.二、天然放射性现象1放射性现象:贝克勒耳发现天然放射现象,使人们认识到原子核也有复杂结构,揭开了人类研究原子核结构的序幕通过对天然放射现象的研究,人们发现原子序数大于83的所有天然存在的元素都有放射性,原子序数小于83的天然存在的元素有些也具有放射性,它们放射出来的射线共有三种:射线、射线、射线2、三种射线的本质和特性比较射线:是氦核(He)流,

26、速度约为光速的十分之一,在空气中射程几厘米,贯穿本领小,电离作用强.射线:是高速的电子流,速度约为光速十分之几,穿透本领较大,能穿透几毫米的铝板,电离作用较弱.射线:是高能光子流,波长极短的电磁波,贯穿本领强,能穿透几厘米铅板,电离作用小.说明 放射性元素有的原子核放出射线,有的放出射线,多余的能量以光子的形式射出.种 类本 质质 量(u)电 荷(e)速 度(c)电 离 性贯 穿 性射线氦核4+20.1最强最弱,纸能挡住射线电子1/1840-10.99较强较强,穿几mm铝板射线光子001最弱最强,穿几cm铅版 O 三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较: 3、原子核的衰变

27、定义:放射性元素的原子核由于放出某种粒子而转变为新核的变化称为衰变.衰变规律:电荷数和质量数都守恒.(1)衰变的一般方程:He·每发生一次衰变,新元素与原元素相比较,核电荷数减小2,质量数减少4衰变的实质:是某元素的原子核同时放出由两个质子和两个中子组成的粒子(即氦核)(核内)(2)衰变的一般方程:e每发生一次衰变,新元素与原元素相比较,核电荷数增加1,质量数不变衰变的实质:是元素的原子核内的一个中子变成质子时放射出一个电子(核内), +衰变:(3)射线是伴随衰变或衰变同时产生的、射线不改变原子核的电行数和质量数射线实质:是放射性原子核在发生衰变或衰变时,产生的某些新核由于具有过多的

28、能量(核处于激发态)而辐射出光子(4)半衰期 知放射性标志定义:放射性元素的原子核有半数发生衰变需要的时间,叫这种元素的半衰期. (对大量原子核的统计规律)用希腊字母表示公式:,说明(1)半衰期由放射性元素的原子核内部本身的因素决定的,跟原子所处的物理状态(如压强、温度等)或化学状态(如单质或化合物)无关.(2)半衰期只对大量原子核衰变才有意义,因为放射性元素的衰变规律是统计规律,对少数原子核衰变不再起作用.(3)确定衰变次数的方法:设放射性元素X经过n次衰变m次衰变后,变成稳定的新元素Y,则表示核反应的方程为:XY+nHe +me. 由此可见确定衰变次数可归结为解一个二元一次方程组.根据质量

29、数守恒和电荷数守恒可列方程 两式联立得: 三.原子核的人工转变核能1原子核的组成:质子和中子组成原子核。质子和中子统称为核子。原子核的质量数等于其核子数,原子核的电荷数等于其质子数,原子核的中子数N等于其质量数A与电荷数Z之差,即N=AZ。质子质量= 1007277u16725×1027kg; 中子质量=1008665u16748×10-27kg具有相同的质子数、不同的中子数的原子核互称为同位素2原子核的人工转变及其三大发现原子核的人工转变:用人工方法使一种原子核变成另一种原子核的变化.用高能粒子轰击靶核,产生另一种新核的反应过程,反应方程。式中是靶核的符号,为入射粒子的符

30、号,是新生核符号,是放射出的粒子的符号。1919卢瑟福发现质子:N+HeO+H 1932年查德威克发现中子:Be+HeC+n 1934年约里奥居里夫妇发现放射性同位素和正电子 Al+He P+n PSi+e (其中,P是放射性同位素,e为正电子)3.放射性同位素的应用利用其射线:利用射线的电离作用,用于使空气电离,将静电泄出,从而消除有害静电。射线探伤:如利用钴60放出的很强的射线来检查金属内部有没有砂眼和裂纹,这叫射线探伤,射线贯穿性强,可用于金属探伤,利用放射线的贯穿本领了解物体的厚度和密度的关系,可以用放射性同位素来检查各种产品的厚度,密封容器中的液面高度,从而自动控制生产过程,利用射线

31、杀死体内的癌细胞等.用于治疗恶性肿瘤。各种射线均可使DNA发生突变,可用于生物工程,基因工程。作为示踪原子。如在生物科学研究方面,研究生物大分子结构及其功能。同位素示踪技术起着十分重要的作用。在人工方法合成牛胰岛素的研制、验证方向、示踪原子起着重要的作用. 诊断甲状腺疾病的类型。在输油管线漏的检查和对植物生长的检测方面,示踪原子都起着重要作用.用于研究农作物化肥需求情况,进行考古研究。利用放射性同位素碳14,判定出土木质文物的产生年代。一般都使用人工制造的放射性同位素(种类齐全,半衰期短,可制成各种形状,强度容易控制)四.核力与核能1核力:原子核的半径很小,其中的质子之间的库仑力很大,受到这么

32、大的库仑斥力却能是稳定状态,一定还有另外一种力把各核子紧紧地拉在一起这种力叫做核力(很强的短程力)核力是很强的力 核力作用范围小只在20×1015 m短距离内起作用 每个核子只跟它相邻的核子间才有核力作用2核能(1)结合能:核子结合成原子核时放出一定的能量,原子核分解成核子时吸收一定能量,这种能量叫结合能(2)质量亏损:核子结合生成原子核,所生成的原子核的质量比生成它的核子的总质量要小些,这种现象叫做质量亏损。 也可以认为在核反应中,参加核反应的总质量m和核反应后生成的核总质量m/之差: m=m一m/(3)爱因斯坦质能方程:爱因斯坦的相对论指出:物体的能量和质量之间存在着密切的联系,

33、它们的关系是:E = mc2,这就是爱因斯坦的质能方程。质能方程的另一个表达形式是:E=mc2。说明质能方程告诉我们质量和能量之间存在着简单的正比关系.物体的能量增大了,质量也增大了;能量减小了,质量也减小.(4)核能计算:应用公式E=mc 2时应选用国际单位,即EM的单位为J,m的单位为kg,C的单位为m/s1u相当于9315MeV,其中u为原子质量单位:1u=1660566×1027kg ,lMev= l06 ev,leV16×1019J应用公式E=9315m时,E的单位为兆电子伏(MeV),m的单位为原子质量单位五.重核的裂变与轻核的聚变1重核的裂变(原子弹、核电站的

34、原理)所谓重核即为质量数很大的原子核裂变方程式例举: 重核俘获一个中子后分裂为两个或几个中等质量数的原子核的反应过程叫重核的裂变。在裂变的同时,还会放出几个中子和大量能量 铀235裂变时,同时放出23个中子,如果这些中子再引起其他铀235核裂变,就可使裂变反应不断地进行下去,释放越来越多的能量,这种反应叫链式反应(原子弹的原理)核反应堆是人类对核裂变能的利用。铀235核能够发生接式反应的铀块的最小体积叫做它的临界体积链式反应条件:纯铀235;达到临界体积核反应堆的构造:A.核燃料用铀棒(含3%-4%的浓缩铀) B减速剂用石墨、重水或普通水(只吸收慢中子)C控制棒用镉做成(镉吸收中子的能力很强)

35、 D冷却剂用水或液态钠(把反应堆内的热量传递出去)E建很厚的水泥防护层屏蔽射线,还要考虑核废料的处理。2轻核的聚变(原子弹的原理) 优点:产能效率高,燃料的储量丰富,安全清洁,废料少易处理。所谓轻核是指质量数很小的原子核,如氢核、氘核等某些轻核结合成质量数较大的原子核的反应过程叫做轻核的聚变,同时放出大量的能量方程:HHHen轻核聚变条件:只能发生在超高温(需要几百万度高温)条件下,故轻核聚变也叫做热核反应(在太阳内部、原子弹的爆炸、激光聚焦才能达到这样的高温)。受控热核反应:是人类对聚变能的利用,使得巨大的热核反应能量不以爆炸的形式释放,而是在人工控制下逐渐释放出来,并加以利用。六.粒子物理

36、学到19世纪末,人们认识到物质由分子组成,分子由原子组成,原子由原子核和电子组成,原子核由质子和中子组成。20世纪30年代以来,人们认识了正电子、子、K介子、介子等粒子。后来又发现了各种粒子的反粒子(质量相同而电荷及其它一些物理量相反)。现在已经发现的粒子达400多种,形成了粒子物理学。按照粒子物理理论,可以将粒子分成三大类:媒介子、轻子和强子,其中强子是由更基本的粒子夸克组成。从目前的观点看,媒介子、轻子和夸克是没有内部结构的“点状”粒子。用粒子物理学可以较好地解释宇宙的演化。规律方法 1。掌握典型的反应方程1四种核反应类型(衰变,人工核转变,重核裂变,轻核骤变)衰变: 衰变:(实质:核内)衰变形成外切(同方向旋),衰变:(实质:核内的中子转变成了质子和中子)衰变形成内切(相反方向旋),且大圆为、粒子径迹。 +衰变:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论