




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四节直线、平面平行的判定及其性质最新考纲1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题1线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行线面平行”)la,a,l,l性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行线线平行”)l,l,b,lb2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平
2、行,则这两个平面平行(简记为“线面平行面面平行”)a,b,abp,a,b,性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行,a,b,ab线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面(2)夹在两个平行平面间的平行线段长度相等(3)经过平面外一点有且只有一个平面与已知平面平行(4)两条直线被三个平行平面所截,截得的对应线段成比例(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行(7)垂直于同一条直线的两个平面平行(8)垂直于同一平面的两条直线平行一、
3、思考辨析(正确的打“”,错误的打“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行()(2)平行于同一条直线的两个平面平行()(3)若一个平面内有无数条直线与另一个平面平行,则这两个平面平行()(4)若两个平面平行,则一个平面内的直线与另一个平面平行()答案(1)×(2)×(3)×(4)二、教材改编1下列命题中,正确的是()a若a,b是两条直线,且ab,那么a平行于经过b的任何平面b若直线a和平面满足a,那么a与内的任何直线平行c若直线a,b和平面满足a,b,那么abd若直线a,b和平面满足ab,a,b,则bd根据线面平行的判定与性
4、质定理知,选d.2在正方体abcda1b1c1d1中,e是dd1的中点,则bd1与平面ace的位置关系是 平行如图所示,连接bd交ac于f,连接ef,则ef是bdd1的中位线,efbd1,又ef平面ace,bd1平面ace,bd1平面ace.3如图,在正方体abcda1b1c1d1中,ab2,e为ad的中点,点f在cd上,若ef平面ab1c,则ef .根据题意,因为ef平面ab1c,所以efac.又e是ad的中点,所以f是cd的中点因此在rtdef中,dedf1,故ef.4在正方体abcda1b1c1d1中,下列结论正确的是 (填序号)ad1bc1;平面ab
5、1d1平面bdc1;ad1dc1;ad1平面bdc1.如图,因为abc1d1,所以四边形ad1c1b为平行四边形故ad1bc1,从而正确;易证bdb1d1,ab1dc1,又ab1b1d1b1,bddc1d,故平面ab1d1平面bdc1,从而正确;由图易知ad1与dc1异面,故错误;因为ad1bc1,ad1平面bdc1,bc1平面bdc1,所以ad1平面bdc1,故正确考点1直线与平面平行的判定与性质(多维探究)判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a,b,aba);(3)利用面面平行的性质定理(,aa);(4)利用面面平行的性质(,a,a,a
6、a)直线与平面平行的判定如图,在四棱锥pabcd中,adbc,abbcad,e,f,h分别为线段ad,pc,cd的中点,ac与be交于o点,g是线段of上一点(1)求证:ap平面bef;(2)求证:gh平面pad.证明(1)连接ec,因为adbc,bcad,e为ad中点,所以bcae,所以四边形abce是平行四边形,所以o为ac的中点又因为f是pc的中点,所以foap,因为fo平面bef,ap平面bef,所以ap平面bef.(2)连接fh,oh,因为f,h分别是pc,cd的中点,所以fhpd,因为fh平面pad,pd平面pad,所以fh平面pad.又因为o是be的中点,h是cd的中
7、点,所以ohad,因为oh平面pad,ad平面pad.所以oh平面pad.又fhohh,所以平面ohf平面pad.又因为gh平面ohf,所以gh平面pad.证明两直线平行的方法:中位线定理、线面平行的性质、构造平行四边形、寻找比例式等若线面平行不易证明,可先证面面平行,再证线面平行教师备选例题如图,在直三棱柱abca1b1c1中,点m,n分别为线段a1b,ac1的中点求证:mn平面bb1c1c.证明如图,连接a1c.在直三棱柱abca1b1c1中,侧面aa1c1c为平行四边形又因为n为线段ac1的中点,所以a1c与ac1相交于点n,即a1c经过点n,且n为线段a1c的中
8、点因为m为线段a1b的中点,所以mnbc.又因为mn平面bb1c1c,bc平面bb1c1c,所以mn平面bb1c1c.线面平行性质定理的应用如图,在直四棱柱abcda1b1c1d1中,e为线段ad上的任意一点(不包括a,d两点),平面cec1平面bb1dfg.证明:fg平面aa1b1b.证明在四棱柱abcda1b1c1d1中,bb1cc1,bb1平面bb1d,cc1平面bb1d,所以cc1平面bb1d.又cc1平面cec1,平面cec1平面bb1dfg,所以cc1fg.因为bb1cc1,所以bb1fg.而bb1平面aa1b1b,fg平面aa1b1b,所以fg平面aa1b
9、1b.通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识1.(2017·全国卷)如图,在下列四个正方体中,a,b为正方体的两个顶点,m,n,q为所在棱的中点,则在这四个正方体中,直线ab与平面mnq不平行的是()ab选项中,abmq,且ab平面mnq,mq平面mnq,则ab平面mnq;c选项中,abmq,且ab平面mnq,mq平面mnq,则ab平面mnq;d选项中,abnq,且ab平面mnq,nq平面mnq,则ab平面mnq.故选a.2(2019·全国卷改编)如图,直四棱柱abcda1b1c1d1的底面是菱形,aa14,ab2,bad60
10、°,e,m,n分别是bc,bb1,a1d的中点证明:mn平面c1de.证明连接b1c,me.因为m,e分别为bb1,bc的中点,所以meb1c,且meb1c.又因为n为a1d的中点,所以nda1d.由题设知a1b1dc,可得b1ca1d,故mend,因此四边形mnde为平行四边形,所以mned.又mn平面c1de,所以mn平面c1de.考点2平面与平面平行的判定与性质判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平
11、行于第三个平面,那么这两个平面平行(客观题可用)注意:谨记空间平行关系之间的转化已知空间几何体abcde中,bcd与cde均为边长为2的等边三角形,abc为腰长为3的等腰三角形,平面cde平面bcd,平面abc平面bcd,m,n分别为db,dc的中点(1)求证:平面emn平面abc;(2)求三棱锥aecb的体积解(1)证明:取bc中点h,连接ah,abc为等腰三角形,ahbc,又平面abc平面bcd,平面abc平面bcdbc,ah平面bcd,同理可证en平面bcd,enah,en平面abc,ah平面abc,en平面abc,又m,n分别为bd,dc中点,mnbc,mn平面abc,bc
12、平面abc,mn平面abc,又mnenn,平面emn平面abc.(2)连接dh,取ch中点g,连接ng,则ngdh,由(1)知en平面abc,所以点e到平面abc的距离与点n到平面abc的距离相等,又bcd是边长为2的等边三角形,dhbc,又平面abc平面bcd,平面abc平面bcdbc,dh平面bcd,dh平面abc,ng平面abc,dh,又n为cd中点,ng,又acab3,bc2,sabc·|bc|·|ah|2,veabcvnabc·sabc·|ng|.解答本例第(1)问时用到了面面垂直的性质及垂直于同一平面的两条直线平行这个结论1.(2019·全国卷)设,为两个平面,则的充要条件是()a内有无数条直线与平行b内有两条相交直线与平行c,平行于同一条直线d,垂直于同一平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年海南澄迈教师招聘真题
- 河南省豫地科技集团招聘笔试真题2024
- 石大学前儿童保育学课件3-1常见病之疾病早发现
- 教学设计太原幼儿师范李慧芳26日改
- 职业教育产教融合实训基地建设项目可行性研究报告
- 跨学科教学视野下的高中语文评价体系创新
- 2025至2030年中国电动木铣行业投资前景及策略咨询报告
- 2025至2030年中国玻璃钢四连体桌行业投资前景及策略咨询报告
- 持续创新驱动下的绿色工业人才培养与合作
- 2025至2030年中国涤棉漂白布行业投资前景及策略咨询报告
- 《人生的智慧》课件
- 深度学习基础与实践 课件 10.1 ResNet网络
- 基于针灸理论下阳朔旧县村景观更新设计研究
- 直播间设计装修合同协议
- 生产过程危险和有害因素之3:“环境因素”辨识应用示例清单(雷泽佳-2025A0)
- 2025年中考生物:环境保护|疾病预防|生物技术|食品安全 4个热点考点练习题汇编(含答案解析)
- 二造管理深度精讲讲义
- 医疗数字化转型中的法律合规策略
- 警务信息侦控题库
- 装饰石膏板行业跨境出海战略研究报告
- GB/T 45340-2025金属及其他无机覆盖层镀层厚度的测量斐索多光束干涉法
评论
0/150
提交评论