版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平行四边形的知识点汇总 平行四边形定义:两组对边分别平行的四边形叫做平行四边形。平行四边形是中心对称图形,对称中心是两条对角线的交点。平行四边形性质1:平行四边形的两组对边分别相等。平行四边形性质2:平行四边形的两组对角分别相等。平行四边形性质3:平行四边形的两条对角线互相平分。平行四边形判定1:两组对边分别平行的四边形是平行四边形。平行四边形判定2:两组对边分别相等的四边形是平行四边形。平行四边形判定3:两组对角分别相等的四边形是平行四边形。平行四边形判定4:两条对角线互相平分的四边形是平行四边形。平行四边形判定5:一组对边平行且相等的四边形是平行四边形。平行线之间的距离及特征平行线之间的距
2、离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。平行线之间的距离特征1:平行线之间的距离处处相等。平行线之间的距离特征2:夹在两条平行线之间的平行线段相等。矩形矩形定义1:有一个角是直角的平行四边形叫做矩形矩形定义2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线。矩形性质1:矩形的四个角都是直角。矩形性质2:矩形的对角线相等且互相平分。(注意:矩形具有平行四边形的一切性质)直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定1:有一个角是直角的平行四边形是矩形
3、。矩形判定2:有三个角是直角的四边形是矩形。矩形判定3:对角线相等的平行四边形是矩形。菱形菱形定义1:有一组邻边相等的平行四边形叫做菱形.菱形定义2:四条边都相等的四边形叫做菱形。菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线。菱形性质1:菱形的四条边都相等。菱形性质2:菱形的对角线互相垂直平分。菱形性质3:菱形的每一条对角线平分一组对角。菱形的面积:菱形的面积等于对角线乘积的一半。推广:对角线互相垂直的四边形面积等于对角线乘积的一半。菱形判定1:有一组邻边相等的平行四边形是菱形。菱形判定2:四条边都相等的四边形是菱形。菱形判定3:对角线互相垂直的平行
4、四边形是菱形。菱形判定4:每条对角线平分一组对角的四边形是菱形。(注意:菱形具有平行四边形的一切性质)正方形正方形定义1:有一组邻边相等的矩形叫做正方形。正方形定义2:有一个角是直角的菱形叫做正方形。正方形定义3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线。正方形性质1:正方形的四个角都是直角。正方形性质2:正方形的四条边都相等。正方形性质3:正方形的两条对角线互相垂直平分且相等。正方形判定1:有一组邻边相等的矩形是正方形。正方形判定2:有一个角是直角的菱形是正方形。正方形
5、判定3:有一组邻边相等并且有一个角是直角的平行四边形是正方形。正方形判定4:对角线垂直平分且相等的四边形是正方形。(注意:正方形具有平行四边形、矩形、菱形的一切性质)四边形的典型题目精编 1,如图1,在平行四边形ABCD中,下列各式不一定正确的是( )A.1+2180° B.2+3180°C.3+4180° D.2+4180°2,如图2,在ABCD中,EF/AB,GH/AD,EF及GH交于点O,则该图中的平行四边形的个数共有( )A.7 个 B.8个 C.9个 D.11个图3图4图2图13,如图3,在平行四边形ABCD中,B=110°,延长AD
6、至F,延长CD至E,连接EF,则E+F=()A. 110° B .30° C.50° D.70°4,对角线互相垂直平分且相等的四边形一定是( ) A正方形 B菱形 C矩形 D等腰梯形5,下列说法中,正确的是() A.正方形是轴对称图形且有四条对称轴B.正方形的对角线是正方形的对称轴C.矩形是轴对称图形且有四条对称轴 D.菱形的对角线相等6,菱形、矩形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角7,已知:如图4,菱形ABCD中,对角线AC及BD相交于点O,OEDC交BC于点E,AD=6cm,则OE的长
7、为()A.6 cmB.4 cmC.3 cmD.2 cmABCD图7图61m1m30m20m图8平行四边形矩形正方形图58,在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水(如图5),看不清所印的字,请问被墨迹遮盖了的文字应是( )A等边三角形 B四边形 C等腰梯形D菱形9,如图6,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为( )A600m2B551m2C550 m 2D500m210,如图7,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积及正方形ABCD的面积比是 ( )BA.34 B.58 C.9
8、16 D.12二、填空题(每题3分,共24分)11,如图8,ABDC,ADBC,如果B =50°,那么D度.图1012,已知梯形ABCD中,ADBC,ABC60°,BD2,AE是梯形的高,且BE1,则AD.AEBCDFC1图11C图12HDAEBFG图913,一个平行四边形被分成面积为S1、S2、S3、S4的四个小平行四边形(如图9),当CD沿AB自左向右在平行四边形内平行滑动时, S1·S4及S2·S3及的大小关系是.14,如图10,已知ABDC,AEDC,AE12,BD15,AC20, 则梯形ABCD的面积为.15015,矩形纸片ABCD中,AD4c
9、m ,AB10cm,按如图11方式折叠,使点B及点D重合,折痕为EF,则DEcm.16,矩形ABCD中,对角线AC、BD相交于点O,AOB2BOC.若AC18cm,则ADcm.17,如图12,矩形ABCD的相邻两边的长分别是3cm和4cm,顺次连接矩形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于cm,四边形EFGH的面积等于cm2.图1318,在直线l上依次摆放着七个正方形(如图13所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1S2S3S4.三、解答题(共40分)19,如图14,等腰梯形ABCD中,ADB
10、C,AD=3,AB4,BC7.求B的度数.20,如图15,四边形ABCD是平行四边形,对角线AC、BD交于点O,过点O画直线EF分别交AD、BC于点E、F.求证:OEOF.图14ACDB图17ABCDOE图16EDCOBFA21,如图17,在ABCD中,ABC5A,过点B作BEDC交AD的延长线于点E,O是垂足,且DEDA4cm,求:(1)ABCD的周长;(2)四边形BDEC的周长和面积(结果可保留根号).22,如图18,ABCD的对角线AC的垂直平分线及边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.图21图19图1823,如图20,正方形ABCD中,P是CD边上一点,DFAP,
11、BEAP.求证:AEDF. 24,如图19,在矩形ABCD中,P是形内一点,且PAPD.求证:PBPC. 25,如图,在梯形中,于点E,F是CD的中点,DG是梯形的高(1)求证:四边形AEFD是平行四边形;(2)设,四边形DEGF的面积为y,求y关于x的函数关系式图20参考答案:一、1,D;2,C;3,D;4,A;5,A;6,C;7,C;8,D;9,B;10,B.二、11,50;12,2;13,S1·S4S2·S3;14,150;15,;16,9;17,10、6;18,4.三、19,过A点作AECD,有AECD,则ABE为等边三角形. 即B=60°;20,因为四边
12、形ABCD是平行四边形,所以ADBC,AOCO,即EAOFCO,又AOECOF,则AOECOF,故OEOF;21,在ABCD中,因为ABC5A,又A+B180°,所以A30°,而ABDC,BEDC,所以BEAB,在RtABE中,ABE90°,AE2AD8cm,A30°,所以BEAE4cm,由勾股定理,得AB4(cm),所以ABCD的周长(8+8)cm;(2)因为BCAD,BCAD,而ADDE,所以DEBC且DEBC,即四边形BDEC是平行四边形,又BEDC,所以BDEC是菱形,所以四边形BDEC的周长4DE16(cm),面积DC·BE8(cm2);22,易证AOECOF,所以OEOF,所以四边形AFCE是平行四边形,又ACEF,所以四边形AFCE是菱形;23,证ABEDAF即得;24,证P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度国际贸易物流运输合同3篇
- 2024年城市综合体停车场租赁管理服务协议2篇
- 洛阳文化旅游职业学院《框架开发》2023-2024学年第一学期期末试卷
- 洛阳商业职业学院《素描4(油画方向)》2023-2024学年第一学期期末试卷
- 影视项目部摄影师聘用合同
- 2024年太阳能光伏发电项目电力设施迁移与接入合同3篇
- 清洁公司精装房施工合同
- 2024年某科技公司关于云计算服务提供合同
- 2025泥工包工合同范文
- 市场研究保密风险评估报告
- 2024年度短视频内容创作服务合同3篇
- 2024年度拼多多店铺托管经营合同2篇
- 2023年北京肿瘤医院(含社会人员)招聘笔试真题
- 能源管理总结报告
- 2024年时事政治试题库
- 2024-2025学年统编版五年级语文上册第七单元达标检测卷(原卷+答案)
- 人教版七年级语文上册《课内文言文基础知识 》专项测试卷及答案
- 【初中数学】基本平面图形单元测试 2024-2025学年北师大版数学七年级上册
- 旅行社分店加盟协议书(2篇)
- 城镇燃气经营安全重大隐患判定及燃气安全管理专题培训
- 个人和企业间资金拆借合同
评论
0/150
提交评论