顶管施工中管壁摩阻力理论公式的商榷_第1页
顶管施工中管壁摩阻力理论公式的商榷_第2页
顶管施工中管壁摩阻力理论公式的商榷_第3页
顶管施工中管壁摩阻力理论公式的商榷_第4页
顶管施工中管壁摩阻力理论公式的商榷_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、顶管施工中管壁摩阻力理论公式的商榷t承徳规范公式存在的问题理论公式的推导i形管道上的土压力形管道上的正压力分布矩形断面管道的摩阻力计算结论摘要 本文针对给水排水管道工程施工及验收规范中计算顶管施工顶力的理论公式,提出了其存在的问题,而这些 问题所造成的谋差也较犬。因此,该文对矩形和圆形管道在顶管施工中的顶力计算提出了対规范公式的修止式。关键词 顶管 土压力 摩阻力 顶力for pipe jacking construction pipe surfacefrictional resistance formula under discussionwang chengde(china associa

2、tion for engineering construction standardization pipeline structure committee)abstract against the jacking force calculation formula of the code for construction and acceptance of water supply and sewerage pipelines,existing problems and errors are here mentioned,and an amended formula for rectangu

3、lar and circular pipe line under pipe jacking construction is recommended in this paper.keywords pipe jacking earth pressure frictional resistance jacking force顶管施工中管道四周受土休摩擦产生摩擦阻力,阻止管道前进。阻力的大小受多种因素的影响是比 较复杂的,英屮最大的因素是施工误差引起的管道轴线弯曲。管道轴线弯曲严重时可使摩阻力成倍增长。 正是由于这一原因,引出了许多计算摩阻力的经验公式。但木文仅限于讨论理论公式,而且仅限于管轴 线严格

4、为直线状态下的摩阻力理论公式,即在排除出于管轴线弯曲所引起的附加摩阻力的询题下讨论管 道摩阻力的理论公式,这吋管道摩阻力的理论公式可以简化为平面问题,可以以管道的横断面为模型例 出计算图式。一、规范公式存在的问题管道摩阻力的理论公式在许多文章和手册中都曾经出现过,后来集中反映在gb 50268-97给水排 水管道工程施工及验收规范屮。规范的6.4.8条规定,顶管的顶力可按下式计算:psd2h+(2h+qjtg%45。一壬)+盘”fv式屮p计算的总顶力(kn);y管道所处土层的重力密度(kn/m3);d】一管道的外径(m);h管道顶部以上覆盖土层的厚度(m);e管道所处土层的内摩擦角(。);3管

5、道单位长度的自重(kn/m),(笔者:应改为由自重产生的力);l管道的计算顶进长度(m);f顶进时,管道表面与其周围土层之间的摩擦系数;几一顶进吋,工具管的迎面阻力(kn)。仅就管道摩擦力而言,上述公式可以简化。设p为单位长度管道的摩阻力,贝山p=ftdl 2h+ (2h+d)席(45。一辛)+盏这一公式引用了摩擦力的基本理论:摩擦阻力等于正压力乘摩擦系数。摩擦系数采用已有的成果, 所以问题的讨论重点转移到止压力的计算上來,式中的tg2(45° -4/2)是主动土压力系数,用k來表示: k产tg?(45° -4)/2),代入上式得:稍作变化,将上式改写如下:p = 27d1

6、j7 + 辛)h + 时此式的物理意义是:管道摩助力等于管顶土压力强度与水平管轴线处主动土压力强度之和的2倍, 乘以管道直径,再乘以摩擦系数,另外再加上管道自重所产生的摩阻力。上式中第1项是管顶土压力和管底地基应力引起的摩阻力,第2项是管道两侧主动土压力引起的摩 阻力,计算吋采用了图示每个方向上的单位土压力乘以管道外径口作为正压力,这种计算方法即违背了 摩擦力的基本理论,因为除管顶、管底和水平管轴线两侧共4处土压力以外,所有的土压力与管道表面 不垂直,并非是正压力。(跳转至卷i'f)二、理论公式的推导假设图1所示的土压力表示方法适用于圆形管道,下而按摩阻力的基本理论来推导摩阻力的理论公

7、 式。1. 管顶土压力造成的正压力管顶土压力强度6是常量,并且有:qfyho在角度为a的圆周上取一微而ds,对应ds的圆心角为da。设作用于ds上的垂直土压力为dnvo 则:dnv=qisin a ds设作用于ds上的正压力为dn。贝dn=dnvsin a 二qsir? a ds因为:ds=di/(2da ),所以:dn=d1/(2q1sin2 a da ),对上式积分,得:呼曲0如辔(今-呼|:=ws/4代入q為n二 jt y hdi/4观itrniiiiii丄 5 yi丁y( h+d, )kr山叫1111图1规范计算图式qmihhii 川 i川 unn图2垂直土压力积分图2. 管道右侧土压

8、力造成的正压力管道右侧土压力强度为q?,是变量,并且有:q2= y (h+di/2-y) kt因为:y=dsin a /2所以:q2二 y (h+d/2-disina/2)k|同样在角度为a的圆周上取一微面ds,对应ds的圆心角为d a。设作用于ds上的水平土压力为dmno 则:dmh=q2cos a ds设作用于ds上的正压力为dmo贝lj: dm=dmncos a =q2cos2a ds,代入q?得:dm=y (h+di/2-disina /2)k1cos2a ds因为:ds = did a /2,所以:对上式积分,得:电“血争弓站“ co*t二警国歩晋)l傷壬伴疋3. 管道四周土压力造成

9、的总正压力由图1可知,作用于管道四周的土压力上下、左右都是对称的,所以作用于管道四周土压力的正压 力z和q为:q= 2(n + m)q-jydsh+k1ih+由此可知图1所示外力引起的鬪形管道单位长度摩阻力应为:p二f (q+3)代入上式的q得圆形管道单位长度摩阻力计算式的修正式:i叫訐+令w+別+刼稍作变化,将上式改写成如下:严今® h+k】此式的物理意义是:管道摩阻力等于管顶土压力强度与水平管轴线处主动土压力强度z和的n/2倍,乘以管道直径,再乘以摩擦系数,另外再加上管道自重所产生的摩阻力。上式与规范公式相比,仅在于2与兀/2的区别,也就是说,规范公式中的由土压力产生的摩阻力部

10、分的计算结果比修正后的摩阻力公式计算结果犬27. 3%。3y(k+d1/2)k.yc h+d"匕图3侧向土压力图4圆形管道上的积分图土压力关系图(跳转至卷片)形管道上的土压力圆形管道上的土压力究竟如何分布?图1所示的土压力是否适用于圆形管道?仔细分析后,图1的土 压力分布尚存在以下问题:1管道上部土压力强度不是常量。管道上部的土压力只有在管顶一点上强度是yh,其余各点均大 于yho从图4分析,a点上的覆盖层厚度与b点和同。也就是说,在不计管道口重的情况下,管道下部 的地基反力与管道上部土压力相等。所以管底的地基应力的强度也不是常量。2. 管道侧向土压力并非呈梯形分布。因为某点的侧向土

11、压力应等于该点的垂直土压力乘以主动土压 力系数。从图4分析,既然b点的垂直方向土压力与a点相等,那么b点的主动土压力也应与a点相等。 也就是说管道下部的侧向主动土压力应与管道上部对称。下面进一步推导作用于圆形管道上的土压力公式,并假定:(1)土压力只有止值,没有负值;(2)地基反力纳入土压力范畴。由图4可知,管道上部土压力6的分布关系式如下:当u二0ji吋q产 y (h+di/2-d£ina /2)当 a 二:n 2 n r'j'qt=y (h+dl/2+d1sina /2)管道侧向土压力g的分布关系式如下:当a二0nq2= y k)(h+d1/2-d1sin a /

12、2)当 a 二:n 2 jiq2=yk1(h+d1/2+d1si na/2)上述公式可以合拼如下:如= *h +因此作用于圆形管道上的土压力应如图5分布。根据图5所示的土压力分布图,下面推导圆形管道 摩阻力计算的理论公式。1 管顶土压力造成的正压力因垂直土压力上下对称,左右也对称,现仅对a二0n /2部份积分。在角度为a的岡周上取一微面ds,对应ds的岡心角为d a。设作用于ds上的垂直土压力为dnv,则:dnv=qisin a ds设作用于ds上的正压力为dn,则:d=dnvsin a 二q】sir? a ds因为 ds二d】/2d a ,所以 dn=d1q1sin2a d a/2, r入

13、q产 y(h+d./2-d.sin a /2),得:对上式积分得:n=7hd.7 卑型sin?滋a+字sin%加一孕sir?ma o z44n2。) 2( a sin2g j 11jrcos<»h-cos= |zd1( h+u|/d?x图6垂直土压力积分图2.管道侧向土压力造成的正压力因水平土压力左右对称,上下也对称,现仅对a二0兀/2部分积分。同样在角度为a的圆周上取一微面ds,对应ds的圆心角为da。设作用于ds上的水平上压力为 则:dmn=q2cos a ds。设作用于 ds 上的正压力为 dm,贝0:dm=dmhcos a =q2cos2 a ds,代入 q?得:dm=

14、 y ki (h+di/2-disin a /2)cos2a ds;因为:ds=did a /2,所以:对上式积分,得:=評5(円+辛卜护k心3. 管道四周土压力造成的总正压力由图5可知,作用于管道四周的土压力上下、左右都是对称的,所以作用于管道四周土压力的正压力之和q为:(1+凤(h+纠一寺力(2+k】)由此可知图1所示外力引起的圆形管道单位k度摩阻力计算式应修正为:p=f(q+ 3)代入上式的q得 dj (24ci此式的物理意义:管道摩阻力等于水平管轴线处土压力强度与主动土压力强度之和的兀/2倍,减去 一个与埋深无关的管道特性项,再乘以管道直径和摩擦系数,另外再加上管道自重所产生的摩阻力。

15、现在可以例出修正后的顶管的顶力计算公式:今(1+3 *十引-寺 d(2+kj+灯建议规范的6. 4. 8条采用此公式(跳转至卷首)四、圆形管道上的正压力分布作用于管道上的土压力一般用垂直压力和侧向压力分别表示。但亦可用法向土压力q表示。冇时用 法向土压力表示使用起来更加方便。由图8可知:dn二q】s i n2 a ds dm=q2cos2 a ds因为:qds二dn+dm二(qisir? a +cos2 a ) ds,所以:q=qisin2a +q2cos2 a ,代入 q】和 q2 的表达式为:h+sma(sin%+kcos%)此式的物理意义是:圆形管道上任何一点的土压力等于该点的垂直土压力

16、乘以一个不大于1的与角 度有关的系数。这一论点将涉及现行地下管道的结构计算,并能减少管道结构强度的投入。yhk,图7水平土压力积分图 图8法向土压力积分图(跳转至卷首)五、矩形断面管道的摩阻力计算如杲管道的断面是矩形,其摩阻如何计算呢?现再看图i所示土压力形状,如果是矩形断面,则土压力全部与矩形断面管道的表面垂直(图10)。 所以这一公式就是矩形断面管道的摩阻力计算公式。单位长度矩形断面管道的摩阻力计算公式:式中符号与前面相同。上式的物理意义是:炬形管道摩阻力等于管顶土压力强度与侧向主动土压力强度平均值之和的2倍, 乘以边长,再乘以摩擦系数,另外再加上管道口重所产牛的摩阻力。图9法向土压力yh

17、川丨丨川!hinniuj.图io矩形断面管道摩阻分布示意图力计算图式(跳转至卷首) 六、结论1. 给水排水管道工程施工及验收规范gb50268-97 z 6. 4. 8条规定的管道摩阻力计算公式不适用 于圆形断面的管道。规范公式中的出土压力产生的摩阻力部分的计算结果比修正后的摩阻力公式计算结 果大27. 3%。但此公式适用于矩形断面管道的摩阻力计算。2. 作用于圆形管道上部的垂直土压力呈曲线分布,并非直线。两侧的主动土压力分布对称于水平管 轴线,呈矩形加等腰三角形,并非梯形。3作用于圆形管道上的土压力可用单一的法向土压力来表示。法向土压力强度q按下式计算:(sin2<h-xlcosza)4. 单位长度圆形管

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论