传染病数学模型实用教案_第1页
传染病数学模型实用教案_第2页
传染病数学模型实用教案_第3页
传染病数学模型实用教案_第4页
传染病数学模型实用教案_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、传染病的随机(su j)感染模型在人群(rnqn)中有病人(带菌者)和健康人(易感人群(rnqn),任何两个人之间的接触都是随机(su j)的。当然健康人与非健康人之间的接触时是否被感染也是随机的。这时如何估计平均每天有多少健康人被感染? 第1页/共12页第一页,共13页。接触(jich)概率感染(gnrn)概率总的感染(gnrn)人数一个健康人被其他的所有病人感染的概率一个健康人被一名指定病人感染的概率第2页/共12页第二页,共13页。人群(rnqn)中只分为健康人和病人两种 isn人群中任何两人的接触(jich)是相互独立的。每人平均每天与 m人接触。 当一健康人与一病人接触(jich)时

2、,健康人被感染的概率为 模型假设第3页/共12页第三页,共13页。接触(jich)概率p接触人数(rn sh)服从二项分布m (1)np感染(gnrn)概率1p1p 一健康人被一指定病人感染的概率1mpn一健康人被感染的概率2p 11(1)ip健康人被感染的人数也服从二项分布,每天被感染的人数 也服从二项分布2sp21(1)mipn()minin第4页/共12页第四页,共13页。离散(lsn)连续(linx)变化(binhu)是时间的函数人群中只分为健康人和病人两种或者易感染者(Susceptible)和已感染者(Infective).病人数和健康人数在总人数中所占比例分别记为 ( )( )1

3、s ti t人群中任何两人的接触是相互独立的。每个病人平均每天的有效接触为常数 第5页/共12页第五页,共13页。( )s tNdidtiN(0)i0i01( )11(1)ti tei101ln(1)mti12i 变化最大?it 1具有(jyu)免疫性SIR 不具有(jyu)免疫性SIS 0(1)(0)diiiidtii()10101() ,( )1() ,teii tti 第6页/共12页第六页,共13页。0(1)(0)diiiidtii()10101() ,( )1() ,teii tti 1( )1i tt 1( )0i t 00(1)(0), (0)diiiidtdssidtii ss

4、 0011s sdsdisii0001()lnsisiss 第7页/共12页第七页,共13页。随着时间(shjin)的变化, ,s i r如何变化?0011s sdsdisiidridtdssidt r单调(dndio)递增s单调(dndio)递减?i0( )rrrt则i 0110s1s1sri 01s110dsdis 则i先单调递增1si达到最大值1si减小且趋向于零011ln0sss第8页/共12页第八页,共13页。0011s sdsdisiidridtdssidt r单调(dndio)递增s单调(dndio)递减0i01si减小且趋向于零s单调(dndio)递减至s稳定性理论设微分方程

5、,方程右边不显含自变量 称之为自治方程。 ( )( )x tf xt第9页/共12页第九页,共13页。( )0f x 的实根0,xx显然(xinrn)也是该方程的解,称为(chn wi)方程(fngchng)的平衡点(奇点)如果存在某个邻域,使得该方程的解在邻域内的某个点(0)x出发,满足0lim ( ),tx tx则称平衡点 为0 x稳定点判定0 x是否为稳定点,主要利用直接法若0()0,fx则0 x为稳定点若0()0,fx则0 x非稳定点00( )()()x tfxxx0()0( )fxtx tcex第10页/共12页第十页,共13页。112212(,)(,)xf x xxg x x121

6、20(,)0(,)f x xg x x001122,xxxx的两个实根称为(chn wi)该微分方程的平衡点001122lim( ),lim( )ttx txx tx 则称该点为稳定(wndng)点,f g是非线性,这时应用泰勒公式,只保留其线性主部,而这时的新方程和原来(yunli)的方程有相同的稳定性。 当特征根为负数或者有负实部时,该点为稳定点,否则该点为非稳定点。第11页/共12页第十一页,共13页。感谢您的观看(gunkn)!第12页/共12页第十二页,共13页。NoImage内容(nirng)总结传染病的随机感染模型。在人群中有病人(带菌者)和健康人(易感人群),。任何两个人之间的接触(jich)都是随机的。与非健康人之间的接触(jich)时是否被感染也是随机的。一个健康人被其他的所有病人感染的概率。人群中任何两人的接触(jich)是相互独立的。当一健康人与一病人接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论