下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中数学思想的例题浅谈作者宫明星单位淮南十一中电话【摘要】教学中教会学生建立数学思想,掌握思想方法,可以使学生在解题时,寻求出已知和未知的联系,提高学生分析问题的能力,从而使学习的思维品质和能力有所提高。数学思想方法的渗透、展现是借助于数学知识、技能这些载体的,离开了具体内容,是无法向学生渗透、传授数学思想方法的。【关键词】数学思想;分析能力;指导作用数学课的教学, 是使学生获得基础知识和技能,从而形成解决问题的能力的过程。而在此过程中,数学思想的培养, 直接影响了学生后续学习的质量和水准。初中数学的教学就是要使学生获得知识技能和一些数学学习的基本思想,从而为接受更高教育的学习做好准本备。初中
2、学生的理解和接受能力是比较有限的, 所以教学中所涉及到的数学思想也是普遍和易懂的。在数学思想的培养过程中,几乎没有哪位数学教师单纯为了教授数学思想而刻意单独作文字阐述,而基本上是在一些特定的情境或者以例题、 习题为载体, 通过解决问题或者解答题目逐步渗透数学思想。从而通过较长一段时间的该方式的教学, 使学生能够形成以一定的思想为指导解决问题的方法。教学中教会学生建立数学思想,掌握思想方法,可以使学生在解题时,寻求出已知和未知的联系,提高学生分析问题的能力, 从而使学习的思维品质和能力有所提高。或许直到初三毕业, 好多学生也不能叙述到底有哪些数学思想, 也说不出某某数学思想到底是什么含义,但是他
3、们能够对很多例题或者习题的内容加以分析,进而利用长期锻炼出来的数学思想来解决,这就是培养数学思想最朴素的目的。下面,笔者对初中所涉及的几种基本数学思想举例说明。一 符号思想例 1、根据下表中的规律,从左到右的空格中应依次填写的数字是()1 001 101 a100,011 b011,100 c011,101 d101,110 解析: 从表格中图形与相应代表的数之间关系可以发现代表0、1 的图形,选 b. 例2 、 已 知 :3223222,8338332,154415442,245524552, , 若淮南市 2009年数学学科参评论文abab21010符合前面式子的规律,则 a + b =
4、解析:观察已知的四个等式我们发现:等式的左边是一个整数与分数的和,且整数与分数的分子相同,分数的分母等于整数的平方减1,等式的右边是左边的整数的平方与左边的分数的积,从上述规律可以得到式子abab21010中10b,991102a,所以109ba.评注:这种题形式多样,学生感到熟悉又易于理解,具有较强的探索性,求解过程反映了课程标准所倡导的数学活动方式观察、实验、猜测、推理等.因此既要重视基础知识的学习,又要加强此种题型的训练和研究,切实提高分析问题、解决问题的能力. 二 整体思想整体思想方法是指用 “集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整
5、体处理来解决问题的方法.利用整体思想往往能够避免局部思考带来的困惑 . 例 3 解方程组2002x+2003y=2001 2003x+2002y=2004 分析: 如果选用代入法解答,比如由得,x= 2001- 2003y2002 , 再代入,得2003(2001- 2003y2002)+2002y=2004 解答起来十分麻烦 . 如果选用加减法,比如,2003- 2002,可以消去 x,得20032003y-20022002y=20012003- 2004 2002 形式也很复杂,不易求解 . 注意到两个方程的系数正好对调这一特征,先将两方程相加,+,得4005x + 4005y = 400
6、5 化简,得 x+y=1 再将两方程相减, - ,得 -x + y = - 3 即 x-y=3 由、组成方程组,得x + y =1 x - y =3 解这个方程组得x = 2y = -1. 例 4如图,矩形 abcd 被两条对角线分成四个小三角形,如果四个小三角形的周长的和为86cm,一条对角线长是13cm,那么矩形的面积是多少?分析 本题要求矩形的面积,根据面积公式s=abbc,只需求出 abbc 即可。解根据题意,有ab+bc+cd+da =86-2(ac+bd )=86-413 =34. ab+bc=17. 两边平方,得ab2+2abbc+bc2=289, 又 ab2+bc2=ac2=1
7、69, 两式相减,得 2abbc=120, abbc=60(2). 整体思想在数学解题中的应用,不仅仅局限于上述的类型,还涉及到其他的各种题型,只有通过不断地挖掘、归纳、提炼,才能更好地把握整体思想的本质和规律,从而使问题迎刃而解。三 数形结合思想数和形是初中数学中被研究得最多的对象,数形结合是一种极富数学特点的信息转换,它通过形理解数, 利用形的直观加深对数量关系的理解;通过数理解形, 利用数的抽象性加深对图形位置关系的理解,即图形位置问题的坐标化,数量关系图形化。例 5已知正比例函数ykx的图象与反比例函数5kyx(k 为常数,0k)的图象有一个交点的横坐标是 2求两个函数图象的交点坐标;
8、若点11()a xy,22()b xy,是反比例函数5kyx图象上的两点, 且12xx,试比较12yy,的大小分析与解答:(1)由由交点横坐标的含义可得方程组252kyky消去字母y,得522kk,解得1k所以正比例函数的表达式为yx,反比例函数的表达式为4yx要求两个函数图象的交a b c d o 点坐标,只须在得出的函数解析式基础上画出图象(反比例函数4yx的图象分别在第一、三象限内的双曲线,正比例函数yx的图象是经过原点的一条直线)由题知交点的横坐标是2 即可求出纵坐标也是2 即为( 2,2) ,由图象的关于原点成中心对称可得另一交点为( 22),所以两函数图象交点的坐标为( 2,2)
9、,( 22),( 2)利用上问中所画图形得反比例函数4yx的图象的y 的值随x值的增大而减小,所以当120 xx时,12yy当120 xx时,12yy当120 xx时,因为1140yx,2240yx,所以12yy借助“形”的几何直观来阐明“数”之间的某种关系能使问题简单。这类问题常把函数、方程、不等式联系起来 . 四 化归思想所谓化归思想,就是指对于那些数学问题难以求解时,我们可以根据问题的性质、 条件和关系,采取适当的方法把较困难的问题转化为较简单的或早已熟悉的问题来进行解答。例 6 如图, “回”字形的道路宽为1 米,整个“回”字形的长为8 米,宽为 7 米,一个人从入口点a 沿着道路中央
10、走到终点b,他共走了. 思路和解答假设拖把的宽度是1 米,某服务员拿着拖把沿着小路向前推,那人走遍小路相当于把整块场地拖完了,而拖1 的场地相当于那人向前走了1 米,整块场地面积是78=56() ,所以那人从 a走到 b共走了 56米,这样我们就把求线段长度问题化归成求面积问题了。下面是一个化几何问题为代数问题的例题例 7如图,是一块在电脑屏幕上出现的矩形色块图,由6 个颜色不同的正方形组成,设中间最小一个正方形边长为1,则这个矩形色块图的面积为. 8 米7 米b a 思路和解答设次小正方形边长为x,则其余正方形的边长依次为1+x,2+x,3+x,根据题意得:(2+x+3+x) (3+x+x)
11、-【 (3+x)2+(2+x)2+(1+x)2+2x2】=1,解得 x=4. 所以矩形色块图的面积为1311=143. 注: 如果对待这个问题时只考虑几何的面积求法,很容易陷入分别求边长的死胡同, 从而一筹莫展,这里采用代数考虑,将问题用一个方程表达出来,进而求出次小正方形的边长,进而求得解。这里又包含了整体思想、方程思想. 五 换元思想例 8分解因式( x2-3x+2)(x2-3x-4)-72 分析:注意题目的形式特征,把某一部分(比如x2-3x+2)看作一个整体,运用整体换元,把原方程化为形如x2+px+q的二次三项式,进一步用十字相乘法,最后注意分解要彻底。设 x2-3x+2=t 则(x
12、2-3x+2)(x2-3x-4)-72 =t(t-6 )-72 =t2-6t-72 =(t+6) (t-12 )= (x2-3x+2+6) (x2-3x+2-12 )=(x2-3x+8) (x2-3x-10 )=(x2-3x+8) (x-5 ) (x+2). 如果把( x2-3x+2)与(x2-3x-4) 相乘,将得到一个四次多项式,这时再分解就困难了。例 9解方程 3x2-6x-2422xx+4=0 分析:如果先移项, 两边平方,方程变形为一个四次方程, 题目就难解了注意到422xx,3(x2-2x ) ,设422xx为 y, 原方程变形为 3y2-2y-8=0, 再从中解得 y 回代得 x
13、。六 分类思想分类思想是根据所研究的对象相同点和不同点区分不同类型的数学思想方法. 例 10 甲、乙两人分别从相距30km的 a、b两地同时相向而行,经过3h后相距 3km ,再经过2h,甲到 b地所剩的路程是乙到a地所剩路程的 2 倍,求甲、乙两人的速度。解:( 1)当 3h 后甲、乙两人未相遇时,设甲的速度为xkm/h,乙的速度为 ykm/h,则)530(253033033yxyx,解得54yx,甲的速度为 4km/h ,乙的速度为 5km/h。(2)当 3h后甲、乙两人已相遇时,设甲的速度为xkm/h,乙的速度为 ykm/h,则)530(253033033yxyx,解得317316yx,甲的速度为 16/3km/h,乙的速度为 17/3km/h。答:甲的速度为 4km/h,乙的速度为 5km/h 或甲的速度为 16/3km/h,乙的速度为 17/3km/h。这是一个比较简单的分类讨论的题目,在分类中做到细心缜密, 考虑周全,才能够不遗漏两外一种情况。以上是笔者简单列举初中数学所涉几个基本思想,教学中积极引导学生思考问题的方法,尽量能够让学生在多次的训练中找到相同的思想,事实上,这也是一种数学学习的思想, 归
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年宁波房产转让合同范本
- 2024个人承包合同书范本
- 2024年《高端设备采购与技术转让合同》
- 2024年市场营销与推广合作合同
- 2024年高中语文第三单元9劝学同步练习新人教版必修3
- 2024年城市轨道交通建设与维护管理合同
- 2024年定制麻石栏杆安装协议
- 2024年工程质量验收合同
- 2024年专用:虚拟现实技术在军事训练中的应用服务合同
- 2024年城市建筑设计委托合同
- 常见皮肤病讲稿
- 高中化学选修4《化学反应原理》全册教案
- 创建学习型医院实施方案
- 大学《通用英语1》 期中测试卷试题
- 新人教选择性必修一 Unit 4:Discover Useful Structures
- 公共政策导论完整版课件全套ppt教学教程(最新)
- 《乡土中国》整本书阅读 高中语文 必修上册
- Arduino编程控制技术考试复习题库500题(含答案)
- 2022年反洗钱考试题库及答案
- 2021年电力设备预防性试验规程
- 创意大自然动物世界保护野生动物动物介绍PPT模板
评论
0/150
提交评论