《整式的乘除与因式分解》技巧性习题训练(20211127052950)_第1页
《整式的乘除与因式分解》技巧性习题训练(20211127052950)_第2页
《整式的乘除与因式分解》技巧性习题训练(20211127052950)_第3页
《整式的乘除与因式分解》技巧性习题训练(20211127052950)_第4页
《整式的乘除与因式分解》技巧性习题训练(20211127052950)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 整式的乘除与因式分解技巧性习题训练一、逆用幂的运算性质12005200440.25. 2( 23)2002(1.5)2003(1)2004_。3若23nx,则6nx. 4已知:2,3nmxx,求nmx23、nmx23的值。5已知:am2,bn32,则nm 1032=_。二、式子变形求值1若10mn,24mn,则22mn. 2已知9ab,3ab,求223aabb的值. 3已知0132xx,求221xx的值。4已知:212yxxx,则xyyx222= . 524(21)(21)(21)的结果为. 6如果( 2a2b1)(2a2b1)=63,那么 ab 的值为 _ 。7已知:20072008xa

2、,20082008xb,20092008xc,求acbcabcba222的值。8若210,nn则3222008_.nn9已知099052xx,求1019985623xxx的值。10已知0258622baba,则代数式baab的值是 _ 。11已知:0106222yyxx,则 x_,y_。2 三、式子变形判断三角形的形状1已知: a、b、 c是三角形的三边,且满足0222acbcabcba,则该三角形的形状是 _. 2若三角形的三边长分别为a、b、 c,满足03222bcbcaba,则这个三角形是_ 。3已知 a、b、c是abc的三边,且满足关系式222222bacabca,试判断 abc的形状

3、。四、分组分解因式1分解因式: a21b22ab_ 。2分解因式:22244ayxyx_ 。五、其他1已知: m2n2,n2m 2(mn) ,求: m32mn n3的值。2计算:222221001199114113112113 七年级整式复习a.单项式和多项式统称为整式。b 代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(含有字母有除法运算的,那么式子叫做分式fraction.) c 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。d 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂

4、的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。整式和同类项1.单项式(1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式。3、单个的数是单项式4、字母与字母相乘成为单项式5、数与数相乘称为单项式(2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为1。(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。2.多项式(1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常

5、数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。一元n 次多项式最多n+1 项(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。(3)多项式的排列:1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。在做多项式的排列的题时注意:

6、(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。4 (2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。b.确定按这个字母向里排列,还是向外排列。(3)整式:单项式和多项式统称为整式。(4)同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。掌握同类项的概念时注意:1.判断几个单项式或项,是否是同类项,就要掌握两个条件:所含字母相同。相同字母的次数也相同。2.同类项与系数无关,与字母排列的顺序也无关。3.几个常数项也是同类项。(5)合并同类项:1.合并同类项

7、的概念:把多项式中的同类项合并成一项叫做合并同类项。2.合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。3.合并同类项步骤:准确的找出同类项。逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。写出合并后的结果。在掌握合并同类项时注意:1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项。3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。合并同类项的关键:正确判断同类项。整式和整式的乘法整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。加减包括合并同类项,乘除包括基本运算

8、、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。5 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。幂的乘方法则:幂的乘方,底数不变,指数相乘。积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每

9、一项,再把所得的积相加。平方差公式:两数和与这两数差的积等于这两数的平方差。完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2 倍。两数差的平方,等于这两数的平方和,减去这两积的2 倍。同底数幂相除,底数不变,指数相减。6 期末整式复习题一、选择题。1.计算 (-3)2n+1+3?(-3)2n结果正确的是 ( )a. 32n+2 b. -32n+2 c. 0 d. 12. 有以下5 个命题 :3a2+5a2=8a2m2?m2=2m2 x3?x4=x12 (-3)4?(-3)2=-36 (x-y)2?(y-x)3=(y-x)5 中,正确命题个数有( )a. 1 个b. 2 个c.

10、3 个d. 4 个3. 适合 2x(x-1)-x(2x-5)=12的 x 值是 ( ) a. x=1 b. x=2 c. x=4 d. x=0 4. 设(5a+3b)2=(5a-3b)2+m,则 m的值是 ( ) a. 30ab b. 60ab c. 15ab d. 12ab 5. 已知 xa=3 xb=5 则 x3a+2b的值为 ( ) a. 27 b. 675 c. 52 d. 90 6. -an与(-a)n的关系是 ( ) a. 相等b. 互为相反数c. 当 n为奇数时 ,它们相等 ; 当 n 为偶数时 ,它们互为相反数d. 当 n 为奇数时 ,它们互为相反数; 当 n 为偶数时 ,它们

11、相等7.下列计算正确的是( ) a .(-4x)(2x2+3x-1)=-8x3-12x2-4x b. (x+y)(x2+y2)= x3+ y3c. (-4a-1)(4a-1)=1-16a2d. (x-2y)2=x2-2xy+4y28. 下列从左到右的变形中,属于因式分解的是( ) a.( x+1)( x-1)=- x2-1 b. x2-2x+1= x(x-2)+1 c. a2-b2=(a+b)(a-b) d. mx+my+nx+ny=(x+y)m+n(x+y) 9.若 x2+mx-15=(x+3)(x+n), 则 m 的值为 ( ) a. -5 b. 5 c. -2 d. 2 10. 4(a-

12、b)2-4(b-a)+1 分解因式的结果是( ) a.(2a-2b+1)2b. (2a+2b+1)2c. (2a-2b-1)2d. (2a-2b+1) (2a-2b-1) 二、填空题。11.计算 3xy2(-2xy)= 12.多项式 6x2y-2xy3+4xyz 的公因式是13.多项式 (mx+8)(2-3x) 展开后不含x 项, 则 m= 14.设 4x2+mx+121 是一个完全平方式,则 m= 7 15.已知 a+b=7,ab=12,则 a2+b2= 三. 解答题 ( 共 55分) 16. 计算 (a2)4a-(a3)2a317. 计算 (5a3b)(-4abc) (-5ab) 18.

13、已知 22n+1+4n=48, 求 n 的值 . 19. 先化简 ,再求值(x+3)(x-4)-x(x-2) , 其中 x=11 20. 利用乘法公式计算(1) 1.02 0.98 (2) 99221. 因式分解4x-16x38 22. 因式分解4a(b-a)-b223. 已知 (x+my)(x+ny)=x2+2xy-6y2,求 -(m+n) ?mn 的值 . 24. 已知 a+b=3, ab= -12,求下列各式的值. (1) a2+b2(2) a2-ab+b2附加题。1. 你能说明为什么对于任意自然数n,代数式 n(n+7)-(n-3)(n-2) 的值都能被6 整除吗 ? 2. 已知 a,

14、b,c 是 abc 的三边的长 ,且满足 : a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状. 9 期末整式复习题答案一. 选择题 ( 共 10 题 每小题 3 分 共 30 分 ) 1. c , 2. b 3. c 4. b 5. b 6. c 7. c 8. c 9.c 10. a 二.填空题 ( 每题 3 分 共 15 分 ) 11. -6x2y312. 2xy(3x-y2+2z) 13. 12 14. 44 15. 25 三. 解答题 ( 共 55 分) 16. 解: 原式 =a8a-a6a3= a9-a9= 0 17. 解 : 原式 =( -20a4b2c)(-5ab)

15、= 100 a5b3c 18.解: 22n+1+4n=48 22n2+ 22n = 4822n (1+2)=48 22n = 16 22n =24n=2 19. 解 : 原式 =x2-4x+3x-12-x2+2x =x-12 把 x=11 代入 x-12 得 : x-12=-1 20. (1)解 : 原式 =(1+0.02)(1-0.02)=1-0.004=0.9996 (2) 解 : 原式 =(100-1)2=10000-200+1=9801 21. 解: 原式 =4x(1-4 x2)=(1+2x)(1-2x) 22. 解: 原式 =4ab-4a2-b2 =-(4a2-4ab+ b2 )=-

16、 (2a-b) 223. 解: (x+my)(x+ny)=x2+2xy-6y2, x2+(m+n)xy+mny2= x2+2xy-6y2即: m+n=2 mn=-6 -( m+n) mn=(-2) (-6)=12 24. (1) 解 : a2+b2= a2+2ab+b2 -2ab =(a+b) 2- 2ab 把 a+b=3, ab= -12 代入 (a+b) 2- 2ab 得: (a+b) 2- 2ab=9+24=33 (2) 解: a2-ab+b2= a2-ab+3ab+ b2-3ab = a2+2ab+b2 -3ab =(a+b) 2-3ab 把 a+b=3, ab= -12 代入 (a+b) 2- 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论