模糊数学原理及其应用资料_第1页
模糊数学原理及其应用资料_第2页
模糊数学原理及其应用资料_第3页
模糊数学原理及其应用资料_第4页
模糊数学原理及其应用资料_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、绪言任何新生事物的产生和发展,都要经过一个由弱到强,逐步成长壮大的过程,一种新理论、一种新学科的问世,往往一开始会受到许多人的怀疑甚至否定。模糊数学自1965年L.A.Zadeh教授开创以来所走过的道路,充分证实了这一点,然而,实践是检验真理的标准,模糊数学在理论和实际应用两方面同时取得的巨大成果,不仅消除了人们的疑虑,而且使模糊数学在科学领域中,占有了自己的一席之地。经典数学是适应力学、天文、物理、化学这类学科的需要而发展起来的,不可能不带有这些学科固有的局限性。这些学科考察的对象,都是无生命的机械系统,大都是界限分明的清晰事物,允许人们作出非此即彼的判断,进行精确的测量,因而适于用精确方法

2、描述和处理。而那些难以用经典数学实现定量化的学科,特别是有关生命现象、社会现象的学科,研究的对象大多是没有明确界限的模糊事物,不允许作出非此即彼的断言,不能进行精确的测量。清晰事物的有关参量可以精确测定,能够建立起精确的数学模型。模糊事物无法获得必要的精确数据,不能按精确方法建立数学模型。实践证明,对于不同质的矛盾,只有用不同质的方法才能解决。传统方法用于力学系统高度有效,但用于对人类行为起重要作用的系统,就显得太精确了,以致于很难达到甚至无法达到。精确方法的逻辑基础是传统的二值逻辑,即要求符合非此即彼的排中律,这对于处理清晰事物是适用的。但用于处理模糊性事物时,就会产生逻辑悖论。如判断企业经

3、济效益的好坏时,用“年利税在100万元以上者为经济效益好的企业”表达,否则,便是经济效益不好的企业。根据常识,显而易见:“比经济效益好的企业年利税少1元的企业,仍是经济效益好的企业”,而不应被划为经济效益不好的企业。这样,从上面的两个结论出发,反复运用经典的二值逻辑,我们最后就会得到,“年利税为0者仍为经济效益好的企业”的悖论。类似的悖论有许多,历史上最著名的有“罗素悖论”。它们都是在用二值逻辑来处理模糊性事物时产生的。客观实际中存在众多的模糊性事物和现象,促使人们寻求建立一种适于描述模糊事物和现象的逻辑模式。模糊集合理论便是在这种形势下应运而生的。模糊方法的逻辑基础是连续值逻辑,它是建立在0

4、,1上的。如若我们把年利税在100万元以上者的属于“经济效益好”的企业的隶属度规定为1,那末,相比之下,年利税少1元的企业,属于“经济效益好”的企业的隶属度就应相应减少一点,比如为0.99999,依此类推,企业的年利税每减少1元,它属于“经济效益好”的企业的隶属度就要相应减少一点。这样下去,当企业的年利税为0时,它属于“经济效益好”的企业的隶属度也就为0了,显然,模糊方法的这种处理方式,是符合于人们的认识过程的,连续值逻辑是二值逻辑的合理推广。现代科学发展的总趋势是,从以分析为主对确定性现象的研究,进到以综合为主对不确定性现象的研究。各门科学在充分研究本领域中那些非此即彼的典型现象之后,正在扩

5、大视域,转而研究那些亦此亦彼的非典型现象。自然科学不同学科之间,社会科学不同学科之间,自然科学和社会科学之间,相互渗透的趋势日益加强,原来截然分明的学科界限一个个被打破,边缘科学大量涌现出来。随着科学技术的综合化、整体化,边界不分明的对象,亦即模糊性对象,以多种多样的形式普遍地、经常地出现在科学的前沿。模糊集合理论自诞生以来,获得了长足的发展,每年全世界发表的研究论文的数量,以指数级速度增长。研究范围从开始时的模糊集合,发展为模糊数、模糊代数、模糊测度、模糊积分、模糊规划、模糊图论、模糊拓扑等众多的分枝。和模糊集合理论的发展速度相比,模糊技术的应用虽稍迟一步,但也取得了令人可喜的进展。自198

6、0年第一例应用模糊技术的产品问世以来,有关这方面的研究报告已逾7000多篇,制造出近千种模糊产品,如计算机、电饭煲、摄像机、微波炉、洗衣机、空调器等。如日本松下公司研制的智能化家用空调器,可根据内置的传感器提供的室内空气温度数据,在室温高或低于25时,会自动地“稍稍”调节空调器的阀门,进行4608种不同状态设定选择,从而获得最佳开启状态和尽可能少的消耗。而这种“稍稍”的程度,只有通过有经验的人的感觉来决定。模糊技术方法不是对精确的摒弃,而是对精确更圆满的刻画。它通过模糊控制规划,利用人类常识和智慧,理解词语的模糊内涵和外延,将各方面专家的思维互相补充。虽然,目前要使模糊技术接近于人的思维,尚难

7、以做到,但正如日本夏普公司电子专家日吉考庄所说:一个普遍应用模糊技术的时代,不久就会到来。我国自70年代开始模糊数学研究以来,成就突出,已形成了2000至3000人的世界最庞大的研究队伍,并在高速模糊推理研究等领域,居世界领先地位。但同时在其它方面,也存在着一些差距,尤其突出的是实验室里的成果,还有许多未转化成经济效益。需要在政府和工业界的支持和参与下,成立专门的开发实体,制定规划,并积极开展国际交流,为我国21世纪的技术发展和科学腾飞奠定基础。第二章 模式识别§2-1模式识别及识别的直接方法在日常生活中生活中,经常需要进行各种判断、预测。如图象文字识别、故障(疾病)的诊断、矿藏情况

8、的判断等,其特点就是在已知各种标准类型前提下,判断识别对象属于哪个类型的问题。这样的问题就是模式识别。一、模糊模式识别的一般步骤 模式识别的问题,在模糊数学形成之前就已经存在,传统的作法主要用统计方法或语言的方法进行识别。但在多数情况下,标准类型常可用模糊集表示,用模糊数学的方法进行识别是更为合理可行的,以模糊数学为基础的模式识别方法称为模糊模式识别。 模式识别主要包括三个步骤: 第一步:提取特征,首先需要从识别对象中提取与识别有关的特征,并度量这些特征,设分别为每个特征的度量值,于是每个识别对象就对应一个向量,这一步是识别的关键,特征提取不合理,会影响识别效果。 第二步:建立标准类型的隶属函

9、数,标准类型通常是论域的模糊集,是识别对象的第个特征。 第三步:建立识别判决准则,确定某些归属原则,以判定识别对象属于哪一个标准类型。常用的判决准则有最大隶属度原则(直接法)和择近原则(间接法)两种。 二、最大的隶属度原则 若标准类型是一些表示模糊概念的模糊集,待识别对象是论域中的某一元素(个体)时,往往由于识别对象不绝对地属于某类标准类型,因而隶属度不为1,这类问题人们常常是采用称为“最大隶属度原则”的方法加以识别,这种方法(以及下面的“阈值原则”)是处理个体识别问题的,称为直接法。 最大隶属度原则:设是个标准类型,若 则认为相对隶属于所代表的类型。例1 通货膨胀识别问题通货膨胀状态可分成五

10、个类型:通货稳定;轻度通货膨胀;中度通货膨胀;重度通货膨胀;恶性通货膨胀.以上五个类型依次用(非负实数域,下同)上的模糊集 表示,其隶属函数分别为:其中对,表示物价上涨。问时,分别相对隶属于哪种类型?解 ,由最大隶属原则,应相对隶属于,即当物价上涨时,应视为轻度通货膨胀;,应相对隶属于,即当物价上涨时,应视为恶性通货膨胀。三、阈值原则 在使用最大隶属度原则进行识别中,还会出现以下两种情况,其一是有时待识别对象关于模糊集中每一个隶属程度都相对较低,这时说明模糊集合对元素不能识别;其二是有时待识别对象关于模糊集中若干个的隶属程度都相对较高,这时还可以缩小的识别范围,关于这两种情况有如下阈值原则。阈

11、值原则:是个标准类型,为一阈值(置信水平)令若则不能识别,应查找原因另作分析。若a³d且有, 则判决相对地属于 例2 三角形识别问题我们把三角形分成等腰三角形,直角三角形, 正三角形,非典型三角形,这四个标准类型,取定论域这里是三角形三个内角的度数,通过分析建立这四类三角形的隶属函数为: 现给定,对上述四个标准类型的隶属度为: 由于关于,的隶属程度都相对高,故采用阈值原则,取,因,按阈值原则,相对属于,即可识别为等腰直角三角形。例3 癌细胞识别在癌细胞识别问题中细胞分成四个标准类型,即:癌细胞,重度核异质细胞,轻度核异质细胞,正常细胞选取表征细胞状况的七个特征:根据病理知识,反映细胞

12、是否癌变的主要指标有以下六个,它们都是 上的模糊集:上述是适当选取的常数细胞识别中的几个标准类型分别定义为: 上述定义中的模糊集的隶属函数为。另两个模糊集、的隶属函数类似定义。给定待识别细胞,设的核面积等七个特征值为据此可算出、,最后按最大隶属度原则识别。例4 冬季降雪量预报内蒙古丰镇地区流行三条谚语:(1)夏热冬雪大,(2)秋霜晚冬雪大,(3)秋分刮西北风冬雪大,现在根据三条谚语来预报丰镇地区冬季降雪量。为描述“夏热”、秋霜晚、秋分刮西北风等概念,在气象现象中提取以下特征:当年67月平均气温:当年秋季初霜日期:当年秋分日的风向与正西方向的夹角。于是模糊集(夏热),(秋霜晚)、(秋分刮西北风)

13、的隶属函数可分别定义为:其中是丰镇地区若干年6、7月份气温的平均值,为方差,实际预报时取=0.98其中是若干年秋季初霜日的平均值,是经验参数,实际预报时取=17(即9月17日),=10(即9月10日)。取论域,“冬雪大”可以表示为论域上的模糊集,其隶属函数为:采用阈值原则,取阈值,测定当年气候因子。计算,若则预报当年冬季“多雪”,否则预报“少雪”。用这一方法对丰镇19591970年间隔12年作了预报,除1965年以外均报对,历史拟合率为11/12。§2-2 贴近度与模式识别的间接方法 一、贴近度 表示两个模糊集接近程度的数量指标,称为贴近度,其严格的数学定义如下: 定义1 设映射 :

14、 满足下列条件:(1) , (2) , (3) 若满足 有 则称映射为上的贴近度,称为与的贴近度。贴近度的具体形式较多,以下介绍几种常见的贴近度公式 (1) Hamming 贴近度或 (2)Euclid贴近度 或 (3)格贴近度定义7 映射,(或=)称为格贴近度,称为与格贴近度。其中, (称为与的内积) (称为与的外积)若,则值得注意的是,这里的格贴近度是通过定义来规定的,事实上,格贴近度不满足定义1中(1),即,但是,当时,格贴近度满足定义1的(1)-(3)。另外格贴近度的计算很方便,且用于表示相同类型模糊度的贴近度比较有效,所以在实际应用中也常选用格贴近度来反映模糊集接近程度。还有许多贴近

15、度,这里不在一一介绍。贴近度主要用于模糊识别等具体问题,以上介绍的贴近度表示式各有优劣,具体应用时,应根据问题的实际情况,选用合适的贴近度。 二、模式识别的间接方法择近原则在模式识别问题中,各标准类型(模式)一般是某个论域上的模糊集,用模式识别的直接方法(最大隶属度原则、阈值原则)解决问题时,其识别对象是论域中的元素。另有一类识别问题,其识别对象也是上的模糊集,这类问题可以用下面的择近原则来识别判决。择近原则:已知个标准类型、,为待识别的对象,上的贴近度,若则认为与最贴近,判定属于一类。例5 岩石类型识别岩石按抗压强度可以分成五个标准类型:很差()、差()、较好()、好()、很好()。它们都是

16、上的模糊集,其隶属函数如下(图2-1)10 200 400 600 900 1100 1800 2000图 2-1今有某种岩体,经实测得出其抗压强度为上的模糊集,隶属函数为(图2-3)。图 2-3试问岩体应属于哪一类。计算与的格贴近度,得:按择近原则,应属于类,即属于“较好”类(类)的岩石。例6 小麦亲本识别在小麦杂交育种过程中,亲本选择是关键。现有五种类型的小麦亲本,它们是:早熟型,:矮杆型,:大粒型,:高肥丰产型,:中肥丰产型。判断小麦亲本类型的主要依据是以下五种性状特征:抽穗期,:株高,:有效穗数,:主穗粒数,:百粒重。第种类型亲本的第个特征,是模糊集,这些模糊集除(早熟型的抽穗期)与(

17、矮杆型的株高)外,其余都是中间型的正态分布模糊集。为简单计,将正态分布函数展开,取前两项作它的近似值,则有于是的隶属函数可表示为:而,的隶属函数取为偏小值型: 为确定隶属函数中的参数值,在熟知的标准类型中,每类型选出个新本为样本,分别计算各样本的第个特征的均值及方差,取以上参数值见表(2-1)表 2-1亲本参数性状早熟矮杆大粒高肥丰产中肥丰产抽穗期-6.71.15.59.61.05.811.91.25.211.30.95.18.91.2株高67.187.750.0-70.072.467.990.952.267.981.235.976.584.657.5有效穗数9.111.218.18.318.

18、210.89.413.215.69.813.211.37.213.25.8主穗粒数40.255.092.037.552.580.744.254.521.241.251.013.337.648.393.9百粒重3.04.40.32.43.40.34.06.00.33.64.20.33.34.00.2现有一待识对象,它的第个特征是中间型正态分布模糊集,隶属函数可近似表示为: 。式中参数值见表(2-2)表 2-2特性参数抽穗期株高有效穗数主穗粒数百粒重8.585.66.236.23.431.541.9700.28计算识别对象的第个特征与第种标准类型对应特征的格贴近度并定义第种标准类型与识别对象的贴近

19、度为:计算结果列于表(2-3)表 2-3早熟()矮杆()大粒()高肥()中肥()(,)0.501.001.001.001.00(,)1.000.001.000.760.99(,)1.000.880.770.640.96 (,)0.230.980.890.830.98 (,)1.001.000.981.001.00 (,)0.230.000.770.640.96表(2-3)的最后一行为与各标准类型的贴近度。由于与的贴近度最高(0.96),故判定识别对象为代表的类型,即为中肥丰产类型的亲本。例7 遥感土地复盖类型分类遥感是根据不同的地物对电磁波谱有不同的响应这一原理,来识别土地复盖的类型。空间遥感

20、的一个象元相当于地面0.45公倾地物的综合。遥感图象识别分类中,要涉及不少模糊概念,例如,“以红松为主的针叶林”就是一个没有明确界线的模糊概念。这是遥感本身的特性决定的。因此用模糊数学的方法对遥感图象进行识别分类应该是行之有效的方法。美国爱达荷大学R.C.Heller 教授指出,国际上当以水体、沙地、森林、城镇、作物、干草作为分类单位(即标准类型)时,空间遥感的分类精度可达83.93%甚至更高。但当分类单位深入到更小的土地复盖单元时,精度就不理想了。现在将分类单位细分阶段为以下五种标准类型:公路,:村庄农田,:红松为主的针叶林,:阔、针混交林,:白桦林。对于多波段遥感技术,假设采用个波段,则每

21、一地物对应一个维数据向量。1975年1月22日美国发射LandSat-2,提供了MSS-4,5,6,7这四个波段的数据,故有。取论域其中分别为象元对应于MSS-4,5,6,7各波段的光谱强度。于是五种标准类型可表为上的模糊集。由于各波段光谱强度是正态分布模糊集,故第个标准类型的(+3)波段光谱强度的隶属函数为: 定义第种标准类型为:因而其中为若干个第种类型第(+3)个波段光谱强度的均值,为方差,东北凉水林场的这些参数值见表(2-4)表 2-4标准类型MSS-4MSS-5MSS-6MSS-719.060.5618.241.6051.244.3225.241.9821.892.8824.684.8

22、247.374.0921.632.3915.461.2212.580.8836.543.5517.332.0816.220.6412.780.5842.412.8721.221.50170.8213.20.42450.9423.200.42设为识别对象,定义与的贴近度为: (1)其中 = (2)表 2-5类型N识别对象max判别结果效果0.920.720.500.500.500.92正确0.650.990.500.500.500.99正确0.500.500.990.600.500.99正确0.500.500.610.990.650.99正确0.500.500.500.620.890.89正确按

23、及 (3-26)(这里与是的均值与方差)。现有东北凉水林场空间遥感象元(待识别对象)五个,按(1)与(2)计算它们与五个标准类型的贴近度,计算结果在表(2-5)按择近原则进行识别判决,准确率100%。例8 雷达识别现有个雷达类,每个雷达类可用发射频率、脉冲重复频率、脉冲宽度等特征来刻画,假设共有个特征,第类雷达的第个特征可以取个值。由于保密的需要及信号环境的日益复杂,这些特征及其取值都带有一定的模糊性。设第类雷达的个特征为类雷达的第个特征取值为,其隶属函数为中间型柯西分布,即设为待识别对象,它的个特征为的第个特征的隶属函数也取中间型柯西分布:采用格贴近度,令则为识别对象的第个特征与类雷达第个特

24、征贴近程度的度量。一般情况可令(是各的加权平均值,权系数表示个特征的重要性程度)可作为识别对象与第类雷达总贴近的度量。根据的大小可判定属于何类雷达,但是,由于权系数的确定有一定的模糊性,及的隶属函数的确定带有一定的主观性,从而导致贴近度有一定的模糊性。因此对及进行模糊化处理,设这里,都是模糊数(见第五章),取。令 的隶属函数为则为识别对象与第类雷达的贴近程度的模糊测度。为得到所属雷达类别的确切判决,类似于阈值法则,给定水平值,令若 且唯一,则判定为类雷达;若 且,则判定为类雷达。用上述方法(将权系数及贴近度模糊化),经上千次仿真试验,比传统的贴近度及线性加弘平均法,误判率有所下降。第三章 模糊

25、规划§3-1 模糊极值一、有界函数的模糊极值设 (为实数集) 是有界函数,求函数的普通极值问题是求使满足上式的为在上的最大值点,为最大值,最大值点不一定唯一. 设的一切最大值点的集合为称为的优越集.当时,函数在处取到最大值,使达到最优.当时,虽不是最大值,但对不同的,与最大值的差异有所不同,也就是说,对于不属于的,它们的“优越性”程度有所不同,为了反映中各点不同的优越程度,将优越集模糊化,并利用它将极值模糊化.定义1设是有界函数,定义的隶属函数为 () 称为的无条件模糊优越集称的的无条件模糊极大值.这里,它的求属函数按扩张原理为 (约定)注 (1)当为的极大点,即时,当为的极小点,即

26、时,充分必要条件是 (2)当时, 当时, 当时,因此,反映了在模糊意义下,对的模糊数大值的求属程度.例1 设,,定义, , , ,则 , 并且 于是 又 故 的无条件模糊极小集定义为的无条件极大集,显然有 且有,,所有极小集是极大集的余集.二、模糊约束下有界函数的模糊极值设:是有界函数,考虑在约束下的最大值问题,这是一个模糊规划问题,求解这个问题意味着既要最大限度地满足约束,又要最大限度地达到理想目标,为此定义如下:定义2 设目标函数是有界函数,是模糊约束,令这里的是定义1中的无条件模糊优越集,称为在约束下的条件模糊优越集,称为在约束下的条件模糊极大值.它们的求属函数分别为: 求解目标函数在模

27、糊约束下的条件极大值有如下三个步骤: (1)求无条件模糊优越集 (2)求条件模糊优越集 (3)求条件最佳决策,即选择,使就是所求的条件极大点,就是在模糊约束下的条件极大值.例2采区巷道布置是矿井开拓中的重要内容,其目的就是建立完善的矿井生产系统,实现采区合理集中生产,改善技术经济指标.因此,合理地选择最优巷道布置方案,对于矿井生产具有十分重要的意义.根据煤矿开采的特点和采区在矿井生产的作用,在选择最优巷道布置方案时,要求达到下列标准:(1)生产集中程度高; (2)采煤机械化程度高;(3)采区生产系统十分完善; (4)安全生产可靠性好;(5)煤炭损失率低; (6)巷道掘进费用尽可能低.上述问题,

28、实际上就是一个模糊约束下的条件极值问题,我们可以把(1)(5)作为模糊约束,而把(6)作为目标函数.设某矿井的采区巷道布置有六种方案可供选择,即=(方案), (方案), (方案), (方案), (方案), (方案).经过对六种方案进行审议,评价后,将其结果列于表1方案评价项目:生产集中程度高较低高较高很高较高较高:采煤机械化程度高高较高较高高很高高:采区生产系统完善一级较低较低很高高较高:安全生产可靠度高较低一般较低高一般高:煤炭损失率低高较高一般一般一般很低:巷道掘进费用(万元)59.4069.1078.8034.5044.2063.60将表1中的语言真值(评价结果)转化为各模糊约束集,的隶

29、属度转化的对应关系如下:对, , , 而言,对应关系为:很 低较 低一 般较 高高很 高0.00.20.40.60.81.0对 而言,对应关系为很 低较 低一 般较 高高很 高1.00.80.60.40.20.0将表1中的巷道掘进费用目标函数用公式 计算出,因此得表2 其值语言与隶属函数转换表2方案 0.20.80.41.00.60.60.80.60.60.81.00.80.40.20.21.00.80.60.20.40.20.80.40.80.20.40.60.60.61.00.440.22010.780.34计算模糊判决集为 (按列求最小) 由 根据最大求属度原则,方案四最优例3 在某种食

30、品中投放某种调味剂,每公斤食品中的含量设为克,对顾客爱好作调查统计,得爱好函数为 对于使爱好函数值越大的值,所制产品越畅销,因而收益越大,但是由于成本核算等等原因,对值需要进行限制,这种限制集合的边界是模糊的,即的约束条件为一模糊集,其隶属函数为试确定合理的剂量,使得在接受约束的条件下,获得最优收益.解 这是一个规划问题,分三步进行.(1) 求无条件模糊优越集,由于,令,得.又当时,时,因而,.因此(2) 求条件模糊优越集其中满足方程(3) 选择,使,即对目标的可能度为45.93%,而要实现这种可能性,应选择调味剂的最佳剂量为2.085克.需要说明的是,在本例中如果将约束条件确切化,以的核0,

31、1为约束,这是一个普通规划问题,所得结论是选择最佳剂量为1克.从约束条件看,已是100%遵守,但所能达到的最高目标相对整个目标函数来说是很低的,由,说明相对整个目标来说,其优越程度仅达24.6%.如果把条件放松为模糊约束条件,且适当降低的水平,却可以获得较好的目标值.如例中的结果,当时,从接受约束条件来看虽仅达45.9%,但目标函数的优越程度也升到了45.9%,从而提高了整体优化水平.由于在实际问题中,约束条件往往不是绝对的,有一定的伸缩性,模糊规划的思想就是利用这点灵活性,兼顾目标函数与约束条件综合地选择最优方案.例4 植物的种植密度与产量有密切的关系.已知某种杉树的种植密度与产量的关系如下

32、:这里表示每公顷土地上种植的棵数,表示每公顷土地产出木材的体积.现有一片杉树森林,其密度不均匀,估计“大约是三千”.试估计该森林每公顷木材最高产量.解 设表示“大约是三千”这一模糊,的隶属函数为估计木材产量的问题,就是求在的约束下函数的模糊条件极大值.为此先求有界函数的无条件模糊优越集.因,所以在约束条件下的条件模糊优越集为:条件模糊极值为,其隶属函数为:为求条件最佳决策,即满足条件的注意到的隶属函数曲线是单调降的,而是正态分布模糊集,在约束下的模糊最佳决策(即模糊条件极大点),是方程的两个根当中的较小者,解之得.由可知,时,接受约束的程度为46.9%,同时,相对于整体目标函数,优越程度也是4

33、6.9%.由可知,该森林每公顷木材最高产量估计为.§3-2 模糊线性规划一、普通线性规划普通线性规划的一般形式为 目标函数约束条件 矩阵表达形式其中 线性规划问题的标准形式 (3-1) 二、模糊线性规划在实际问题中,有时线性规划的约束条件带有模糊性,这就是解谓的模糊线性规划,其模型为 这是“”表示一种弹性约束,可读作“近似小于等于”.“近似小于等于”是一个模糊概念,可以用一个模糊集来表示它.表示第个约束的左边表达式,模糊集表示“”这一事实,当 时,完全接受约束,应有;适当选择一个伸缩系数,约定当时,不认为,这时应有;当时,应从1下降到0,表示约束程度降低.为了简单可行,规定如下:设 ,对每一个约束,相应地有中一个模糊渠与之对应,它的隶属函数为 其中是适当选择的常数,叫做伸缩指标,这样一来,我们将弹性约束转化成模糊约束,再令就将全部约束条件转化成一个模糊约束.当时,退化为普通约束集,模糊约束条件中“”退化为“”模糊线性规划的模型简记为 (3-2)约束的弹性必然导致目标的弹性,为将目标函数模糊化,先求解普通线性规划问题: 满足 (3-3)以及 满足 (3-4)其中称为(3-2)的伸缩指标向量.设是(3-32)的最优值,是(3-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论