版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一部分边坡稳定性分析原理及防治措施1.边坡稳定性基本原理1.1边坡稳定性精确分析原理要对边坡稳定性问题进行精确分析,首先要对材料性能进行透彻的的研究实 验,查清它的各种应力一应变关系以及它的屈服、破坏条件。假定这些问题都已 查清,那么从理论上讲,边坡在指定荷载下的稳定性问题是可以精确解决的。七 步骤大致如下:(1) 进行边坡在指定荷载下的应力、变形的精确分析。分析过程中,要采 用合理的数学模型来反映材料的特性,务使这种数学模型能够如实表达出材料的 主要性能,例如应力一应变间的非线性、卸载增荷性质、屈服破坏性质等等。分 析工作要通过计算机和非线性有限单元法进行。(2) 这种精确计算的数学分析将
2、给岀各点应力、应变值。例如,就抗剪问 题讲,通过分析得到了每一点上的抗剪强度二c+f。,从而可以算出每一部分 点上的局部安全系数。如果每一点上的k均大于1,整个计算体系在抗剪上当然 是安全的。如果有个别点已达屈服,则由于在计算程序中已反映力材料性质,这 些部位的t将自动等于.,表明这些部位已进入屈服状态。只要这些屈服区是 孤立的、小范围的,而没有形成连贯的破坏而,那么,在指定荷载下该体系仍是 稳定的。进入屈服状态的部位大小,野可以给出一个安全度的概念。反之,如果 屈服的部位已经连成一个连贯的破坏面,甚至已求不出一个满足平衡要求的解 答,就说明该体系在指定荷载下已不能维持稳定。(3) 如果要推算
3、“安全系数”,首先要给出安全系数的定义。第一种方法,是将荷载乘以k,并将k逐渐增大。每取一个k值就进行如 上一次分析,直到k达到某临界值,出现了连贯性断裂面或己无法求得解答为止。 这个临界值就是安全系数。显然,这样求出的k具有“超载系数”性质。第二种方法,是将材料的强度除以k,并用于计算中,逐渐增加k,使其强 度逐渐降低,直至失稳。相应的k值就是安全系数。显然,这样求得的k具有“材 料强度储备系数”的意义。上述方法虽很理想,但是近期内还不能实现。首先,要进行这种合理分析, 必须对材料的特性有透彻、明确的了解。但目前度地基以及组成边坡的土、石这 类的认识,还远远未达到这个地步。实际上这类材料具有
4、很复杂的性质,还没有 统一完善的理论可资遵循,也没有一个合适的数学模型可以采用。其次,及时在 理论上以解决了材料的性能问题,但要具体分析问题,还须对建筑物和地基进行 详尽的查勘,取得各种所需的数据和资料。尤其遂于天然地基和边坡,材料不均 匀性很大,试验勘察的工作量也将十分巨大,必须改革勘察和成果整理分析的手 段才能满足要求。计算中,对于计算域的选取,及边界条件的选用,也有待研究。 对于中小型工程以及需要快速估算的情况,更不适应。总之,这种精确分析法尚 未达到实用程度,而是一个发展方向。1.2边坡稳定性问题的近似分析一一极限平衡法由于精确合理的稳定性分析方法还在发展之中,目前我们几乎无例外的都采
5、 用近似方法来研究解决实际问题。这类方法可总称为“极限平衡分析法”,它们 随着土力学的发展而出现和完善,是很自然的。将来即使出现更为精确合理的方 法,它们仍然具有一定的实用价值。所以,对于这类方法加以归纳、分析和改进, 是很有意义的。在极限平衡分析法中,我们采用以下一些基本概念:(1)通过大量的实践、观测,辅以简单的理论分析,归纳出各种实际问题中 可能出现的破裂面的形态。(2)决定破坏面的形式后,我们就拟定若干个可能的破坏面,分别进行核算。 算出每个剪切面的安全系数,其中最低的安全系数,就接近于问题的解答。相应 的剪切面野接近于最危险面(如果k小于1,这个而就是可能的破坏而)。在分析每个剪切面
6、的安全系数时,我们用试算法进行。即假定一个k值,将 材料的强度除以k值,作为计算中采用的强度。然后推算剪切面上的反力,这些 反力既要和外荷载维持平衡,又要在剪切而上达到极限平衡状态。对于一个任意 假定的k,这两种条件不能同时满足修改k值,知道这些条件得到满足。相应的 k就是这个剪切面上的安全系数。总之,安全系数k需要通过试算才能确定。只 有在最简单的情况线,k值才能直接算出。采用极限平衡法时,应注意以下几点:(1)这个分析是针对一个虚拟的情况进行的,即假想材料的强度都降低了 k倍,沿剪切而处达到极限平衡状态。这种虚拟状态不等于现实情况(除非k等 于1),我们只是利用这种状态来推求安全系数而已。
7、(2)因此,这种分析只能求出k值,以及在上述虚拟情况下的剪切而反力 和某些内力,不能求出失稳以前真实的反力和内力,更不能求出变形。(3)这种分析法只是一个粗糙的和综合性的分析,在求解中一定要采用许 多假定。不同的假定会的到不同的成果。所以,并不存在一个“精确解”。尽管极限平衡分析法存在上述问题或缺陷,但是,由于精确分析尚未成熟, 它仍然是目前广泛应用的方法,也是一个比较有效的手段。实践证明,这要我们 透彻了解它的基本原理,谨慎的选择计算方法和数据,这种近似分析仍能提供合 理的解答,使我们顺利解决复杂的问题,完成设计任务。以下是瑞典条分法、毕肖普法、传递系数法、詹布法的计算原理。1. 2. 1瑞
8、典条分法基本计算原理及计算步骤(1)基本原理:当按滑动土体这一整体力矩平衡条件计算分析时,由于滑面上各点的斜率都 不相同,白重等外荷载对弧面上的法向和切向作用分力不便按整体计算,因而整 个滑动弧面上反力分布不清楚;另外,对于”>0的粘性土坡,特别是土坡为多 层土层构成时,求w的大小和重心位置就比较麻烦。故在土坡稳定分析中,为便 于计算土体的重量,并使计算的抗剪强度更加精确,常将滑动土体分成若干竖直 土条,求各土条对滑动圆心的抗滑力矩和滑动力矩,各取其总和,计算安全系数, 这即为条分法的基本原理。(2)基木假定瑞典法是针对平面(应变)问题,假定滑动而为圆弧面(从空间观点来看为圆 柱而)。根
9、据实际观察,对于比较均质的土质边坡,其滑裂而近似为圆弧而,因 此瑞典法可以较好地解决这类问题。一般来说,条分法在实际计算屮要作一定的 假设,其具体假设如下:1、假定问题为平面应变问题;2、假定危险滑动而(即剪切而)为圆弧而,其位置及安全系数通过试算确定, 即作若t个不同的圆弧,计算其相应的安全系数k,其中最危险的(k值最低) 圆弧以及相应的k值就是所求的答案;3、假定抗剪强度全部得到发挥,各圆弧上的k值,根据下式计算:k 旦(其中mr为剪切面上能提供的抗滑力矩,必丁为滑动力矩),所有这些力矩都以 滑弧的圆心为矩心;4、不考虑各分条之间的作用力。(3)计算步骤:设一土坡,地下水位很深,滑动土体所
10、在土层孔隙水压力为0。条分法的计 算步骤如下:1)按一定比例尺if坡;2)确定圆心0和半径r,画弧ab;3)分条并编号,为了计算方便,土条宽度可取滑弧半径的1/10,即b=0. 1r,以圆心0为垂直线,向上顺序编为0、1、2、3、,向下顺序为一1、2、 3、,这样,0条的滑动力矩为0, 0条以上土条的滑动力矩为正值,0条以下滑动力矩为负值;4)计算每个土条的自重wi = rhp (hi为土条的平均高度)5)分解滑动而上的两个分力ni =wicos a iti = wisin a i式中:a i法向应力与垂直线的夹角。6)计算滑动力矩mt=rwi/=!sin ai式中:n:为土条数目。7)计算抗
11、滑力矩m r = rtg(p wi cos ai + rcl i=l式中:l为滑弧ab总长。8)计算稳定安全系数(safetyfactor)。ntg(p wi cos ai + cl- /=! 工 wi sin aii=l9)求最小安全系数,即找最危险的滑弧,重复2厂8),选不同的滑弧,求k1、 k2、k3值,取最小者。该法计算简便,有长时间的使用经验,但工作量大,可用计算机进行,由于 它忽略了条间力对ni值的影响,可能低估安全系数(520) % o1.2.2毕肖普法边坡稳定性分析原理及计算步骤瑞典条分法作为条分法计算中的最简单形式在工程中得到广泛应用,但实 践表明,该方法计算出的安全系数偏低
12、。实际上,土体是一种松散的聚合体,若 不考虑土条之间的作用力,肯定无法满足土条的稳定,即土条无法自稳。随着边 坡稳定分析理论与实践的发展,如何考虑土条间的作用力成为边坡稳定分析的发 展方向之一,并形成了一些较为成熟并便于工程应用的分析方法,毕晓普条分法 就是其中代表性的方法之一毕晓普在分析土坡稳定时认为土条z间的作用力不可忽略,土条z间的相互 作用力包括土条两侧的竖向剪切力和土条z间的推力,并假设:1、滑动面为圆弧面;2、滑动面上的剪切力做了具体规定;3、土条z间的剪切力忽略不计(简化毕晓普法)。作为考虑分条间相互影响的第一步,我们只考虑其间的水平作用力e,而取t二0,取出任一分条來看,作用的
13、荷载有览、q. 6,待求的反力、内力为叫、si、ar.o由剪切面上的极限平衡要求根据式有: s*+塑k k我们将所有的荷载及反力,内力均投影在x轴上,可写出(见下图)eicosa, +上式可改写为:qi cos 加 +w, sin ai ei = s""" (cili + nifi) + qi + witgai(1 -3)k将所有分条的迭加,由于lae-0,得为(cz/z + nifi) sec aik-工qi_工witgai - 0于是可得:工(cili + nifi) sec ai(1-4)上式中的ni尚未可知,我们可再引用分条上竖向力的平衡条件,得:ni c
14、os ai + ui cos ai +nifi sin aik-=wi解之得:wtw-逆沁(1-5)ni =£ . k_. fi smai cos ai + k代入(1-4)式,并整理z得:(1-6)k =k工 +工盹加式中的ux2是分条的宽度,dx21icos加,"二seos®。分析上两式,除k值外 所有项均为已知,但k出现在等式两边,所以只能用试算或“试算一迭代”法解 乙 试算的步骤如下:根据问题性质,估计几个k值,例如估计ki、肛k,等三 值。其屮&取小一些,而心取大一些,然后将这三个k值代入式子的右边,又 可以算出相应的三个k值,分别记为舊、运、瓦
15、。我们将v舊、瓦、<瓦、 瓦、v瓦、瓦三个点子绘在直角坐标纸上,连成光滑的曲线,并从原点作 一 45度的射线,与这条曲线交于一点,该点所相应的k值即为所求的安全系数(图3-5)o如要提高精度,可用这样求岀的k值再次代入上式的右边,求出更 精确的k。迭代法的步骤如下,先估计一个k值,代入上式右边,求出新的k值,再用 这个k值代入上式右边,求出修正的k值。这样一直进行到满足精度要求为止。 在很多情况下,收敛是迅速的。毕晓普法由于推导屮只忽略了条间切向力,比瑞典条分法更为合理,与更精确的 方法相比,可能低估安全系数(27)%。图39中示一简单的边坡稳定问题。剪切面为一折线abc,其上有两个 分
16、块。设想分界面bb上不存在内力,各块独自站立在其底部剪切面上。我们 分别计算这两个块体在底面上的反力v、s】、弘和s2。,并分别求其安全系数:_ c& + fn_ 叩2 +代 i ,ix ss2设它们都大于1,就是说,在天然情况下,假定分界面上无内力,则两个块体都能自行稳定,但是它们的安全系数显然不相同k < k2) 0现在设想剪切面上的c和f逐步降低,则达到某一限度时,号块首先不能稳定,但号块尚有潜力,所以号块必然要倒向号块,以寻求它的支 持。这样看来,即使在天然情况下分界面bb上确无内力,在失稳过程中也必 然会产生这些内力,直到所有分块的潜力都挖尽为止。设边坡的最终安全系数为
17、k,将c及f值均除以k降低,则边坡即将失稳。 此时,对第块讲:对第块讲:| 了2“2k1因k1<1,即丛+型年 我们将(丛+型)称为这一块的不平衡下滑k k '1 k k力(或剩余推力),记为几。这意味着剪切面甜上不能抵抗全部下滑力si, 尚差一值fz这个f|力可以由两个因素来平衡它,一个是在bb线上产牛 则的方向必平行于,而且p沪,側二0。换言之,我们假定每一分 界面上推力的方向平行于上一分块的底坡。具体计算时需用试算法,即假定一个k值,丛边坡顶部第一块 算起,求出它的不平衡下滑力碍,作为1、2两块间的推力匕2。再计算 第2块在原有荷载和作用下的不平衡下滑力f2,作为2、3块间
18、的推力 p23如此计算到第n块,如果该块在原有荷载以及推力p作用下,其安 全系数适为k (或即该块的不平衡下滑力几适为0),则即所求之k值。 如不满足这条件,可以根据几小于或大于0,增减原定的k值,重新 计算。一般我们可先取三个k值同时试算,其中一个k值取大些,一 个取小些,最后求出相应的"值。将化对k绘成曲线,从上找出化二0时 的k值,即为所求之值。兹将具体计算公式推导如下。图310中示序号 为i的一个分条,其上作用有垂直荷载缈肌和水平荷载(均指合成 值)。右侧面承受上一分条的不平衡下滑力倾角为qi。左面 上为本条的不平衡下滑力px+尸几,倾角为qi,底部为法向反力叫孔隙 压力山及
19、切向反力心c。将各力投影在底面上,用平衡方程写出:好=(比 sin % + qj cos aj - (牛 +(3_i0)式中f$_ = cos(e_ -e)- f sin(y_ -e)式(3-10)屮右边第一项表示本条的卜滑力,第二项表示本条的抗滑力,第 三项表示上一条传下来的不平衡下滑力的影响。对于第一分条,最后一项为0。 用上式逐条计算,直到第n条,要求算出的f,尸0,由此确定k。上述计算需以试算法解之,工作量稍大(至少需耍计算三个k值,然后用曲 线插补求出所需k值)。为了简化计算,可以采用以下较近似而迅捷的办法,即对 于每一分条用下式计算其不平衡下滑力:不平衡下滑力二下滑力xk -抗滑力
20、这样(3-10)就改为:f. = (wj sin + qj cos a j - c/. + (wt cos ai 一 ui 一 q. sin y)/ + f而= cos(0t - a:) - .齐 sin(0_ - 0)求解k的条件仍是ft.=0o由此,可以得到一个k的一次方程,所以直接计算k而不 用试算。有时,其结果和更合理的做法比较相差也不大,而迅捷过之。但是这两 种做法求出的k值之间并无一定谁大谁小的规律,而且在某些问题中,两者仍有 较大差别。这个方法在我国铁道部门釆用颇广,多用来核算滑坡稳定,被称为“不平衡推力 传递法”。a称为推力传递系数,并编有一些数表可供查阅。本法在分析屮能顾及t
21、力的作用,计算工作也不繁复(如用简化的推力传递法尤 为方便)。存在的问题则为:由于p力的方向被硬性规定与上一分条底坡平行,所 以有吋会出现矛盾。因为,设某一分界面上的推力为p,其倾角为a ,则将p分解 为水平及垂直分力:e - pcosat = psina但t不应该大于分界而上的容许抗剪力:tch | em k k式中c及0为分界面上的抗剪指标,h为分界面高度。但既然硬性规定p的倾角为 a ,则对于某些分条,上述条件就不能满足,甚至使t超过分界面土的极限抗剪 力丁 = ch + £*/ ,就不合理了。在不少边坡稳定问题中,垂直分界面上的c及0值较大,另外,大部分剪切面的 倾角也比较平
22、缓,所以往往只在顶部一、二分块处可能破坏式(3-14)的要求, 这样就不至对k值产生较大影响。所以,不平衡推力传递法还是有广大适用场合 的。如果在边坡内无空隙压力及水平荷载作用,则可将式(3-10)和(3-12)中的山 和q置为0,以简化算式。1. 2. 4詹布法边坡稳定性分析计算原理及计算方法一九五四年瑞典人詹布(nilmar janbu)就提出了 “普遍条分法”的概念。一 九五七年他再次在第四次国际土壤力学和基础工程会议期刊上发表了此法 (我国建筑译丛:建筑结构1966年第2期载有摘译文)。1972年,詹布又 在纪念卡萨格兰特教授的文集堤坝工程中发表了一篇比较详尽的论文 “边坡稳定计算”,
23、再一次阐述了他的方法。詹布法的主要特点在于:他并不假定竖宜分界面上t力的数值、或分 布方式、或推力方向、或假定分界面上达到极限状态,而是假定分界面上推 力作用点的位置。作了这个假定后,就可以利用力矩平衡的条件,把t表示 为e的函数,等价于消去了 t,使问题得解(图3 12)。实际上分界面上e力作用点在什么地方是不知道的。但它至少不会落在滑 面以下或紧靠滑面处,而总是位在靠近分界面高度之半到下部三分点或四分点 范围内。詹布氏认为:当c二0时,在大部分分条中,可取e的作用点 在全高的下三分点处,如o0,则在受压区、被动区或边坡的出口处, 该点位置应稍高于三分点,而在主动区,则稍低一点,从而画出一条
24、假定的 推力线分布图。当e力的作用点假定后,我们取出第i号分条考察,以底部叫作用点处为 矩心写下该分条的力矩平衡条件,可得(图3-13):+臥-qz,如果m对矩心有偏心,则可将其力矩计入在内。江上试移项,并除以ax,注意 = tg ($为推力线倾角),可得:ax h zt + -ti=-eta+ei z' n 1各分条的0、ax,.山、zi:均为已知量,所以如果已知分界面上的e的分 布,就可从上试由顶向底逐块算出t的分布。当在分界面上存在渗透压力及业屮时,我们宜假定“接触压力” e 的作用位置。在成立力矩平衡条件时,我们将uu及都作外力处 理。t ax了 + 丄a7;ax, + eh
25、= 巴人 + uim lv-uti_x h;-qz,式中q代表除渗透压力外的其他水平荷载,又上式,得:”i 奶+ (瓠应堆+% 佥-u心佥-除 对于第一块,w:及ni的作用线可能不通过宽度中心,贝ij0点位置应稍移动,各力臂均以该点为准。特别是卩的力臂,将小于-o2如果分条很窄,则at ax,为高级微量,可以略去。另外如可写为(芈1ax.dx 工q+工旳求出k后,利用下式计算&: gee? ry耳=(2 + witg at)-c ax, + (比一 (7,.) z-) 1+#餉累计&,得个分界面上的e"这是第一循环的工作,也就是毕晓普法的计算。几佥可令近似等于心茁 舊
26、写为(執从而e奶+(务帖(券口式中(轨值之求法如下:林淘轴画成曲线,然后再语分条中线处量其斜率而得。也为在i号分条中线处推力作用到剪切面中点垂距,(学)产2,这样, dx axz.每条分界线上的t值,可以直接从该线上的e值及分块上的&、q计算,而不必 从顶部逐块按顺序计算。找到t和ez间的关系式后,贝uk的计算仍可利用式(36),只是牡改为2sec awi+at,而且需迭代试算而已。将式(3-6)改写为工即比+(叱+的-)/;为q+工旳ge 试算的程序如下:7seca 第一循环,令所有的均为0,用第32节中方法,求出相应的k值, 即用试算法或迭代法解下式之中k:工qax,+ (叱-9)用1 +尹匕所以毕晓普解答是詹布法的第一近似值。 第二循环,将从第一循环求出的e,和&,代入式(323)、(324) 或(325)中计算7;及口。将47;代入式(327)中,修
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 29240-2024网络安全技术终端计算机通用安全技术规范
- 感谢师恩的佳句
- 《常用纤维棉麻》课件
- 《风险管理技巧培训》课件
- 《市场资源配置ZY》课件
- 清洗用洗涤碱市场洞察报告
- 滑雪板产业运行及前景预测报告
- 处理陶瓷和金属的研磨机市场发展现状调查及供需格局分析预测报告
- 印刷机用盘纸市场洞察报告
- 白兰地杯市场发展预测和趋势分析
- 2024年德阳发展控股集团有限公司招聘笔试参考题库附带答案详解
- 平安普惠入职测试题184题答案
- 4.3现代社会中的运动健身文化课件-高一上学期体育与健康人教版
- 家庭花卉养护知识大全
- 2024春国开会计实务专题形考任务题库及答案汇总
- 个人电脑安全培训
- 职业健康检查机构执法监督检查表
- 老年肺炎病人的护理
- 运维方案设计
- 小米创始人雷军的创业经历
- 数学四年级上册 含有中括号的混合运算说课稿
评论
0/150
提交评论