




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、问题的提出1.1.设设)(xf在在0 x处连续处连续, ,则有则有2.2.设设)(xf在在0 x处可导处可导, ,则有则有例如例如, , 当当x很小时很小时, , xex 1 , , xx )1ln( )()(0 xfxf )()()()(0000 xxoxxxfxfxf (如下图)(如下图))()(0 xfxf )()()(000 xxxfxfxf 第1页/共44页xey xy 1oxey oxy )1ln(xy 第2页/共44页不足不足:问题问题:寻找函数寻找函数)(xP, ,使得使得)()(xPxf 误差误差 )()()(xPxfxR 可估计可估计1、精确度不高;、精确度不高; 2、
2、误差不能估计、误差不能估计.设函数设函数)(xf在含有在含有0 x的开区间的开区间),(ba内具有直到内具有直到)1( n阶导数阶导数, ,)(xP为多项式函数为多项式函数nnnxxaxxaxxaaxP)()()()(0202010 误差误差 )()()(xPxfxRnn 第3页/共44页二、二、nP和和nR的确定的确定0 x)(xfy oxy分析分析:)()(00 xfxPn )()(00 xfxPn )()(00 xfxPn 2.若有相同的切线若有相同的切线3.若弯曲方向相同若弯曲方向相同近似程度越来越好近似程度越来越好1.若在若在 点相交点相交0 x第4页/共44页假设假设 nkxfxP
3、kkn, 2 , 1)()(0)(0)( ),(00 xfa 代入代入)(xPn中得中得nnnxxnxfxxxfxxxfxfxP)(!)()(! 2)()()()(00)(200000 得得 ), 2 , 1 , 0()(!10)(nkxfkakk ),(101xfa )(! 202xfa ,)(!0)(xfannn 第5页/共44页三、泰勒三、泰勒(Taylor)(Taylor)中值定理中值定理泰勒泰勒(Taylor)(Taylor)中值定理中值定理 如果函数如果函数)(xf在含有在含有0 x的某个开区间的某个开区间),(ba内具有直到内具有直到)1( n阶的导数阶的导数, ,则则当当x在在
4、),(ba内时内时, , )(xf可以表示为可以表示为)(0 xx 的一个的一个n次多项式与一个余项次多项式与一个余项)(xRn之和之和: : )()(!)()(!2)()()()(00)(200000 xRxxnxfxxxfxxxfxfxfnnn 其中其中10)1()()!1()()( nnnxxnfxR ( ( 在0 x与与x之间之间) ). .第6页/共44页证明证明: : 由假设由假设, ,)(xRn在在),(ba内具有直到内具有直到)1( n阶阶导数导数, ,且且两函数两函数)(xRn及及10)( nxx在以在以0 x及及x为端点的为端点的区间上满足柯西中值定理的条件区间上满足柯西中
5、值定理的条件, ,得得)()(1()(0011之间之间与与在在xxxnRnn 0)()()()()(10010 nnnnnxxxRxRxxxR0)()()()(0)(000 xRxRxRxRnnnnn第7页/共44页如此下去如此下去, ,经过经过)1( n次后次后, ,得得 两函数两函数)(xRn 及及nxxn)(1(0 在以在以0 x及及1 为端点为端点的区间上满足柯西中值定理的条件的区间上满足柯西中值定理的条件, ,得得0)(1()()()(1()(0101011 nnnnnxnxRRxnR !1)()()()1(10 nRxxxRnnnn ( (之之间间与与在在nx 0, ,也在也在0
6、x与与x之间之间) )()(1()(1021022之间之间与与在在 xxnnRnn 第8页/共44页 nkkknxxkxfxP000)()(!)()(称为称为)(xf按按)(0 xx 的幂展开的的幂展开的 n n 次近似多项式次近似多项式 nknkkxRxxkxfxf000)()()(!)()(称为称为)(xf按按)(0 xx 的幂展开的的幂展开的 n n 阶泰勒公式阶泰勒公式 )()(!1)()(010)1(之间之间与与在在xxxxnfxRnnn 则由上式得则由上式得, 0)()1( xPnn)()()1()1(xfxRnnn 第9页/共44页拉格朗日形式的余项拉格朗日形式的余项 1010)
7、1()(!1)(!1)()( nnnnxxnMxxnfxR )()(!)()(0000)(nknkkxxoxxkxfxf )()(!1)()(010)1(之间之间与与在在xxxxnfxRnnn 皮亚诺形式的余项皮亚诺形式的余项0)()(lim00 nnxxxxxR及及.)()(0nnxxoxR 即即第10页/共44页注意注意: :1.1. 当当0 n时时, ,泰勒公式变成拉氏中值公式泰勒公式变成拉氏中值公式 )()()()(000之间之间与与在在xxxxfxfxf 2.2.取取00 x, , 在在0与与x之间之间, ,令令)10( x 则余项则余项 1)1()!1()()( nnnxnxfxR
8、 第11页/共44页)(!)0(! 2)0()0()0()()(2nnnxOxnfxfxffxf ) 10()!1()(!)0(! 2)0()0()0()(1)1()(2 nnnnxnxfxnfxfxffxf麦克劳林麦克劳林(Maclaurin)(Maclaurin)公式公式第12页/共44页四、简单的应用例例 1 1 求求xexf )(的的n阶麦克劳林公式阶麦克劳林公式. .解解,)()()()(xnexfxfxf 1)0()0()0()0()( nffffxnexf )()1(注意到注意到代入公式代入公式,得得).10()!1(! 2112 nxnxxnenxxxe第13页/共44页由公式
9、可知由公式可知! 212nxxxenx 估计误差估计误差)0( x设设!1! 2111, 1nex 取取.)!1(3 n其误差其误差)!1( neRn).10()!1()!1()(11 nxnxnxnexnexR第14页/共44页 常用函数的麦克劳林公式常用函数的麦克劳林公式)()!12()1(! 5! 3sin221253 nnnxonxxxxx)()!2()1(! 6! 4! 21cos22642nnnxonxxxxx )(1)1(32)1ln(1132 nnnxonxxxxx)(1112nnxoxxxx )(!)1()1(! 2)1(1)1(2nnmxoxnnmmmxmmmxx 第15页
10、/共44页例例 2 2 计算计算 403cos2lim2xxexx . .解解)(! 2114422xoxxex )(! 4! 21cos542xoxxx )()! 412! 21(3cos2442xoxxex 4440)(127limxxoxx 原式原式.127 第16页/共44页xy xysin 五、小结1 1. .T Tayloraylor 公式在近似计算中的应用公式在近似计算中的应用; ;第17页/共44页五、小结第18页/共44页o五、小结第19页/共44页o五、小结第20页/共44页o五、小结第21页/共44页o五、小结第22页/共44页2 2. .T Tayloraylor 公式
11、的数学思想公式的数学思想-局部逼近局部逼近. .第23页/共44页第24页/共44页第25页/共44页第26页/共44页第27页/共44页第28页/共44页第29页/共44页第30页/共44页第31页/共44页第32页/共44页第33页/共44页第34页/共44页第35页/共44页第36页/共44页第37页/共44页第38页/共44页第39页/共44页思考题思考题利用泰勒公式求极限利用泰勒公式求极限30)1(sinlimxxxxexx 第40页/共44页思思考考题题解解答答)(! 3! 21332xoxxxex )(! 3sin33xoxxx 30)1(sinlimxxxxexx3333320
12、)1()(! 3)(! 3! 21limxxxxoxxxoxxxx 33330)(! 3! 2limxxoxxx .31 第41页/共44页一、一、当当10 x时,求函数时,求函数xxf1)( 的的n阶泰勒公式阶泰勒公式 . . 二、二、求函数求函数xxexf )(的的n阶麦克劳林公式阶麦克劳林公式 . . 三、三、验证验证210 x时,按公式时,按公式62132xxxex 计算计算xe的近似值,可产生的误差小于的近似值,可产生的误差小于 0.010.01,并求,并求e的的近似值,使误差小于近似值,使误差小于 0.010.01 . . 四、四、应用三阶泰勒公式求应用三阶泰勒公式求330的近似值,并估计误差的近似值,并估计误差. . 五、五、 利用泰勒公式求极限:利用泰勒公式求极限:1 1、xexxx420sincoslim2 ;2 2、)11ln(lim2xxxx . .练练 习习 题题第42页/共44页一、一、)1()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新规定:实习生也需签订劳动合同
- 2025【范本】房屋租赁合同协议
- 2025简易个人借款合同书范本下载
- 2025体育赛事组委会责任保险合同样本
- 2025墓地使用权转让合同
- 2025项目环境监测评估验收技术服务合同
- 2025房屋买卖合同模板2
- 2025交通运输合同协议
- 2025解除租赁合同协议书
- 西北狼联盟2025届高三仿真模拟(二)历史试题试卷含解析
- 2024年职业病防治考试题库附答案(版)
- GB/T 4706.53-2024家用和类似用途电器的安全第53部分:坐便器的特殊要求
- 《智能网联汽车用摄像头硬件性能要求及试验方法》编制说明
- 2024年3月ITSMS信息技术服务管理体系基础(真题卷)
- 节能评审和节能评估文件编制费用收费标准
- 2023-2024年《劳务劳动合同样本范本书电子版模板》
- 中国居民口腔健康状况第四次中国口腔健康流行病学调查报告
- MOOC 数据挖掘-国防科技大学 中国大学慕课答案
- 中药注射剂合理使用培训
- 第13课+清前中期的兴盛与危机【中职专用】《中国历史》(高教版2023基础模块)
- 2024年国家粮食和物资储备局直属事业单位招聘笔试参考题库附带答案详解
评论
0/150
提交评论