版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、洛必达法则洛必达法则型未定式解法型未定式解法型及型及一、一、:00 定义定义.00)()(lim,)()(,)()(型未定式型未定式或或称为称为那末极限那末极限大大都趋于零或都趋于无穷都趋于零或都趋于无穷与与两个函数两个函数时时或或如果当如果当 xFxfxFxfxaxxax例如例如,tanlim0 xxx,sinlnsinlnlim0bxaxx)00()( 4.2 洛必达法则洛必达法则.)()(lim)()(lim);()()(lim)3(; 0)()()(),()2(;)()(,)1(xFxfxFxfxFxfxFxFxfaaxFxfaxaxaxax 那末那末或为无穷大或为无穷大存在存在都存在
2、且都存在且及及本身可以除外本身可以除外点点点的某邻域内点的某邻域内在在都趋于零都趋于零及及函数函数时时当当设设定理定理:定义定义 这种在一定条件下通过分子分母分别求导再这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的方法称为洛必达法则求极限来确定未定式的值的方法称为洛必达法则. .,:该法则仍然成立该法则仍然成立时时当当注注 x证证定义辅助函数定义辅助函数, 0),()(1 axaxxfxf, 0),()(1 axaxxFxF,),(0 xaU内任取一点内任取一点在在 ,为端点的区间上为端点的区间上与与在以在以xa,)(),(11件件满足柯西中值定理的条满足柯西中值定理的条xFx
3、f则有则有)()()()()()(aFxFafxfxFxf )()( Ff )(之间之间与与在在ax ,aax 时时当当,)()(limAxFxfax ,)()(limAFfa .)()(lim)()(limAFfxFxfaax 例例1 1解解.tanlim0 xxx求求)()(tanlim0 xxx原式原式1seclim20 xx . 1 例例2 2解解.123lim2331 xxxxxx求求12333lim221 xxxx原式原式266lim1 xxx.23 )00()00(例例3 3解解.1arctan2limxxx 求求22111limxxx 原式原式221limxxx . 1 例例4
4、 4解解.sinlnsinlnlim0bxaxx求求axbxbbxaxaxsincossincoslim0 原式原式. 1 )00()( axbxxcoscoslim0 例例5 5解解.3tantanlim2xxx 求求xxx3sec3seclim222 原式原式xxx222cos3coslim31 xxxxxsincos23sin3cos6lim312 xxx2sin6sinlim2 xxx2cos26cos6lim2 . 3 )( 注意:洛必达法则是求未定式的一种有效方法,注意:洛必达法则是求未定式的一种有效方法,但与其它求极限方法结合使用,效果更好但与其它求极限方法结合使用,效果更好.
5、.例例6 6解解.tantanlim20 xxxxx 求求30tanlimxxxx 原式原式xxxx6tansec2lim20 22031seclimxxx xxxtanlim310 .31 型未定式解法型未定式解法二、二、00,1 ,0 ,0 例例7 7解解.lim2xxex 求求)0( xexx2lim 原式原式2limxxe . 关键关键: :将其它类型未定式化为洛必达法则可解决将其它类型未定式化为洛必达法则可解决的类型的类型 .),00()( 型型 0. 1步骤步骤:,10 .0100 或或例例8 8解解).1sin1(lim0 xxx 求求)( 0101 .0000 xxxxxsin
6、sinlim0 原式原式xxxxxcossincos1lim0 . 0 型型 . 2步骤步骤:)sin(cos2sinlim0 xxxxx 例例9 9解解.)2(lim1xexxx 求求)( 1)12(lim1 xxexx原式原式xexxx11)21(lim1 . 3 tetttxt1)21(lim01 令令1)21(2lim0tttete 步骤步骤:型型00,1 ,0. 3 ln01ln0ln01000取对数取对数.0 例例1010解解.lim0 xxx 求求)0(0 xxxeln0lim 原式原式xxxelnlim0 2011limxxxe 0e . 1 xxxe1lnlim0 例例1 1
7、1 1解解.lim111xxx 求求)1( xxxeln111lim 原式原式xxxe 1lnlim111lim1 xxe.1 e例例1111解解.)(cotlimln10 xxx 求求)(0 ,)(cot)ln(cotln1ln1xxxex 取对数得取对数得)ln(cotln1lim0 xxx xxxx1sin1cot1lim20 xxxxsincoslim0 , 1 .1 e原式原式例例1 13 3解解.coslimxxxx 求求1sin1limxx 原式原式).sin1(limxx 极限不存在极限不存在洛必达法则失效。洛必达法则失效。)cos11(limxxx 原式原式. 1 注意:注意
8、:洛必达法则的使用条件洛必达法则的使用条件三、小结三、小结洛必达法则洛必达法则型型00,1 ,0 型型 型型 0型型00型型 gfgf1 fgfggf1111 取取对对数数令令gfy 思考题思考题设设)()(limxgxf是是不不定定型型极极限限,如如果果)()(xgxf 的的极极限限不不存存在在,是是否否)()(xgxf的的极极限限也也一一定定不不存存在在?举举例例说说明明.思考题解答思考题解答不一定不一定例例,sin)(xxxf xxg )(显然显然 )()(limxgxfx1cos1limxx 极限不存在极限不存在但但 )()(limxgxfxxxxxsinlim 1 极限存在极限存在一
9、、一、 填空题:填空题:1 1、 洛必达法则除了可用于求洛必达法则除了可用于求“00” ,及” ,及“ ”两种”两种类型的未定式的极限外,也可通过变换解决类型的未定式的极限外,也可通过变换解决_,_,_,_,_,等型的未定式,等型的未定式的求极限的问题的求极限的问题. .2 2、 xxx)1ln(lim0 =_.=_.3 3、 xxx2tanln7tanlnlim0=_.=_.练练 习习 题题二、二、 用洛必达法则求下列极限:用洛必达法则求下列极限:1 1、22)2(sinlnlimxxx ; 2 2、xxxarctan)11ln(lim ;3 3、xxx2cotlim0; 4 4、)1112(lim21 xxx;5 5、xxxsin0lim ; 6 6、xxxtan0)1(lim ;7 7、xxx)arctan2(lim . .三、三、 讨论函数讨论函数 0,0,)1()(2111xexexxfxx当当当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度建筑工程公司资质借用与施工合同终止后工程质量保障协议3篇
- 2025版甲乙丙三方人工智能产业股权调整与市场开拓合同3篇
- 2025版简单安置房住宅小区体育健身设施租赁合同范本3篇
- 2025版装配式建筑构件生产与安装承包合同范本3篇
- 2025版教育器材加工定制合同模板3篇
- 2025版国际劳务输出与雇佣合同3篇
- 二零二五年农产品溯源体系构建与供应链管理合同3篇
- 二零二五年地毯品牌直供采购与铺装服务合同3篇
- 2025版食品行业云计算服务合同7篇
- 2025版著作权集体管理代理合同3篇
- 创意写作与文学欣赏
- 糖果行业大数据分析-洞察分析
- 名画中的瘟疫史知到智慧树章节测试课后答案2024年秋上海健康医学院
- 高空伐树作业施工方案
- 新媒体用户行为研究-洞察分析
- 新建二级加油站项目投资立项可行性分析报告
- 湖北省荆门市(2024年-2025年小学六年级语文)统编版质量测试(上学期)试卷及答案
- 2025版国家开放大学法学本科《知识产权法》期末纸质考试总题库
- 剪辑师的职业规划
- 2022-2023学年北京市海淀区七年级(上)期末语文试卷
- 行业背景、经济运行情况及产业未来发展趋势分析
评论
0/150
提交评论