版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、英文原文switched reluctance motors drive for theelectrical traction in shearerh. chencollege of information and electrical engineeringchina university of mining & technology, xuzhou 221008, chinachenhaocumtabstractthe paper presented the double switched reluctance motors parallel drive system for th
2、e electrical traction in sheare匚 the system components, such as the switched reluctance motor, the main circuit of the power converter and the controller, were described. the control strategies of the closed-loop rotor speed control with pi algorithm and balancing the distribution of the loads with
3、fuzzy logic algorithm were given. the tests results were also presented. it is shown that the relative deviation of the average dc supplied current of the power converter in the switched reluctance motor 1 and in the switched reluctance motor 2 is within ±10%keywords- switched reluctance; motor
4、 control; shearer; coal mine; electrical drivei. introductionthe underground surroundings of the coal mines are very execrable. one side, it is the moist, high dust and inflammable suitoundings. on the other side, the space of roadway is limited since it is necessary to save the investment of exploi
5、ting coal mines so that it is difficult to maintain the equipments. in the modern coal mines, the automatization equipments could be used widely. thefaults of the automatization equipments could affect the production and the benefit of the coal mines. the shearer is the mining equipment that coal co
6、uld be cut from the coal walk the traditional shearer was driven by the hydrostatic transmission system. the fault ratio of the hydrostatic transmission system is high since the fluid in hydrostatic transmission system could be polluted easily. the faults of the hydrostatic transmission system could
7、 affect the production and the benefit of the coal mines directly. the fault ratio of the motor drive system is lower than that of the hydrostatic transmission system, but it is difficult to cool the motor drive system in coal mines since the motor drive system should be installed within the flamepr
8、oof enclosure for safety protection. the motor drive system is also one of the pivotal parts in the automatization equipments. the development of the novel types of the motor drive system had been attached importance to by the coal mines. the switched reluctance motor drive could become the main equ
9、ipments for adjustable speed electrical drive system in coal mines 1, because it has the high operational reliability and the fault tolerant ability 2. the switched reluctance motor drive made up of the double-salient pole switched reluctance motor, the unipolar power converter and the controller is
10、 firm in the motor and in the power converter. there is no brush structure in the motor and no fault of ambipolar power converter in the power converter 34. the switched reluctance motor drive could be operated at the condition of lacked phases fault depended on the independence of each phase in the
11、 motor and the power converter 5, there is no winding in the rotor so that there is no copper loss in the loss and there is only little iron loss in the rotor. it is easy to cool the motor since it is not necessary to cool the rotor. the shearer driven by the switched reluctance motor drive had been
12、 developed. the paper presented the developed prototype.ii. system componentsthe developed switched reluctance motors drive for the electrical traction in shearer is a type of the double switched reluctance motors parallel drive system. the system is made up of two switched reluctance motors, a cont
13、rol box installed the power converter and the controlle匚 the adopted two switched reluctance motors are all three-phase 12/8 structure switched reluctance motor, which were shown in figure 1. the two switched reluctance motors were packing by the explosion-proof enclosure, respectively. the rated ou
14、tput power of one motor is 40 kw at the rotor speed 1155 r/min, and the adjustable speed range is from 100 r/min to 1500r/min.380 vfigure 1.photograph of the two three-phase 12/8 structure switched reluctance motorthe power converter consists of two three-phase asymmetric bridge power converter in p
15、arallel. the igbts were used as the main switches. three-phase 380v ac power source was rectificated and supplied to the power converter. the main circuit of the power converter was shown in figure 2si j2sto1 s32vd3 s5j t 2xvd5thiee-phaserectifieralblclvd22sr s2 vd42mr s4 vdezis&si jzsvd1 s3 j2s
16、vd3 ssj2svd5b2c2+=cvd22i jrsi vd42i jrs4 vdgzs jrsbfigure 2. main circuit of the power converter in the controller, there were the rotor position detection circuit, the commutation circuit, the current and voltage protection circuit, the main switches, gate driver circuit and the digital controller
17、for rotor speed closed-loop and balancing the distribution of the loads.iii. control strategythe two switched reluctance motor could all drive the shearer by the transmission outfit in the same traction guide way so that the rotor speed of the two switched reluctance motors could be synchronized.the
18、 closed-loop rotor speed control of the double switched reluctance motors parallel drive system could be implemented by pi algorithm. in the switched reluctance motor 1, the triggered signals of the main switches in the power converter are modulated by pwm signal, the comparison of the given rotor s
19、peed and the practical rotor speed are made and the duty ratio of pwm signal are regulated as follows,理一勺(1)= k: ek + kp (务 一)+ ad®(3)where, nt is the given rotor speed, "fis the practical rotor speed, f is the difference of the rotor speed,is the increment of the duty ratio ofpwm signal o
20、f the switched reluctance motor 1 at k time, k js the integral coefficient, 瓦 js the proportion coefficient, ek is the difference of the rotor speed at k time, ekl is the difference of the rotor speed at k l time, dl(k) is the duty ratio of pwm signal of the switched reluctance motor 1 at k time, an
21、d dl(k-l) is the duty ratio of pwm signal of the switched reluctance motor 1 at k-1 time. the output power of the switched reluctance motor drive system is approximately in proportion to the average dc supplied current of the power converter as follows,p工*乙0)where, p2 is the output power of the swit
22、ched reluctance motor drive system, iin is the average dc supplied current of the power converte匚in the switched reluctance motor 2, the triggered signals of the mainswitches in the power converter are also modulated by pwm signal. the balancing the distribution of the loads between the two switched
23、 reluctance motors could be implemented by fuzzy logic algorithm. in the fuzzy logic regulator, there are two input control parameters, one is the deviation of the average dc supplied current of the power converter between the two switched reluctance motors, and the other is the variation of the dev
24、iation of the average dc supplied current of the power converter between the two switched reluctance motors. the output control parameter is the increment of the duty ratio of the pwm signal of the switched reluctance motor 2. the block diagram of the double switched reluctance motors parallel drive
25、 system for the electrical traction in shearer was shown in figure 3.rotor speedgivenfigure 3. block diagram of the double switched reluctance motors parallel drive system for the electrical traction in shearerthe deviation of the average dc supplied current of the power converter between the two sw
26、itched reluctance motors at the moment of ti is弓=兀兀】一兀”2where, iinl is the practical average dc supplied current of the power converter in the switched reluctance motor 1 at the moment of ti, iin2 is the practical average dc supplied current of the power converter in the switchedreluctance motor 2 a
27、t the moment of ti.the variation of the deviation of the average dc supplied current of the power converter between the two switched reluctance motors at the moment ofti is(6)where, ei-1 is the deviation of the average dc supplied current of the power converter between the two switched reluctance mo
28、tors at the moment of ti-1.the duty ratio of the pwm signal of the switched reluctance motor 2 at the moment of ti is(7)where, ad2(i) is the increment of the duty ratio of the pwm signal of theswitched reluctance motor 2 at the moment of ti and d2(i-1) is the duty ratio of the pwm signal of the swit
29、ched reluctance motor 2 at the moment of ti-1.the fuzzy logic algorithm could be expressed as follows,and ec = ec$ then u = u»if e = e.where, e is the fuzzy set of the deviation of the average dc supplied current of the power converter between the two switched reluctance motors, ec is the fuzzy
30、 set of the variation of the deviation of the average dc supplied current of the power converter between the two switched reluctance motors, and u is the fuzzy set of the increment of the duty ratio of the pwm signal of the switched reluctance motor 2.the continuous deviation of the average dc suppl
31、ied current of the power converter between the two switched reluctance motors could be changed into thediscrete amount at the interval -5, +5, based on the equations as follows,10220(9)(io)the continuous variation of the deviation of the average dc supplied current of the power converter between the
32、 two switched reluctance motors could also be changed into the discrete amount at the interval 5, +5, based on the equations as follows,the discrete increment of the duty ratio of pwm signal of the switched reluctance motor 2 at the interval 卜5, +5 could be changed into the continuous amount at the
33、interval -1.0%, +1.0%, based on the equations as follows,at>2</) = intk ad(13)there is a decision forms of the fuzzy logic algorithm based on the above principles, which was stored in the programme storage cell of the controller.while the difference of the distribution of the loads between the
34、 two switched reluctance motors could be got, the duty ratio of pwm signal of the switched reluctance motor 2 will be regulated based on the decision forms of the fuzzy logic algorithm and the distribution of the loads between the two switched reluctance motors could be balanced.iv. tested resultsth
35、e developed double switched reluctance motors parallel drive system prototype had been tested experimentally. table i gives the tests results, where o is the relative deviation of the average dc supplied current of the power converter in the switched reluctance motor 1, o is the relative deviation o
36、f the average dc2 supplied current of the power converter in the switchedreluctance motor 2, and,xloo%(15)xloo%(16)table i.tests results of prototyperotor speed (r nun)(a)q(a)6%)6%)15343.851.5-s.l-8.150095.1109.8-7.2"270090.698.64.2-4.2115580.589.0-5.0-5.0150068.875.1-4.4*4.4it is shown that th
37、e relative deviation of the average dc supplied current of the power converter in the switched reluctanee motor 1 and in the switched reluctanee motor 2 is within ±10% v. conclusionthe paper presented the double switched reluctance motors parallel drive system for the electrical traction in she
38、arer. the novel type of the shearer in coal mines driven by the switched reluctance motors drive system contributes to reduce the fault ratio of the shearer, enhance the operational reliability of the shearer and increase the benefit of the coal mines directly. the drive type of the double switched
39、reluctance motors parallel drive system could also contribute to enhance the operational reliability compared with the drive type of the single switched reluctance motor drive system.references1 h. chen, g. xie, “a switched reluctance motor drive system for storage battery electric vehicle in coal m
40、ine,m proceedings of the 5th ifac symposium on low cost automation, pp.95-99, sept. 1998.2 h. chen, x. meng, f. xiao, t. su, g. xie, “fault tolerant control for switched reluctance motor drive/9 proceedings of the 28 annual conference of the ieee industrial electronics society, pp. 1050-1054, nov. 2
41、002.3 r. m. davis, w. f. ray, r. j. blake, "inverter drive for switched reluctance motor: circuit and component ratings/' iee proc. b, vol. 12& no.3, pp. 126-136, sept. 1981.4 d. liu, et al., switched reluctance motor drive. beijing: mechanical industry press, 1994.5 h. chen, j. jiang,
42、c. zhang, g. xie, "analysis of the four-phase switched reluctance motor drive under the lacking one phase fault condition/ proceedings of ieee 5th asia-pacific conference on circuit and systems, pp.304-30& dec. 2000.中文译文电牵引采煤机的开关磁阻电动机摘要:本章介绍了电牵引采煤机双重开关磁阻电动机的并联驱动系统。该系 统由开关磁阻电动机,功率变换器电路和控制器组成
43、。给岀了由通过采用比 例积分算法的调节转子速度的闭环回路和模糊逻辑算法实现的负荷的均衡 分布组成的控制策略。介绍了实验结果。开关磁阻电动机1和开关磁阻电动 机2的功率变换器的平均直流的相对误差为土 10% o关键词:开关磁阻;电动控制;采煤机;煤矿;电传动i 介绍煤矿的地下环境是非常恶劣的。一方面由于它是潮湿的,高粉尘的,和易燃的 环境。另一方面,为了节约开采成本,巷道空间是有限,以至于设备很难维 护。自动化设备在现代化煤矿己经得到广泛应用。自动化设备的故障会直接 影响到煤矿的产量和效益。采煤机是采煤的主要矿山设备。传统的滚筒采煤 机是通过液压传动系统传动的。液压传动系统的故障率很高,因为液压
44、传动 系统的液体很容易受环境污染。液压传动系统的故障直接影响到煤矿的产量 和效率。电传动系统比液压传动系统的故障率低。但是,矿井中电机传动系 统的散热性差,是因为为了煤矿安全,电机传动系统被封装在防爆的外壳内。 电机传动系统是自动化设备的重要组成部分。电机传动系统的小说类型的发 展对煤矿很重要。开关磁阻电动机传动是煤矿调速传动系统的主要设备,由 于它的高工作可靠性和高容错能力。由双极点开关磁阻电动机,单级功率变 换器和控制器组成的开关磁阻电动机传动是电动机和功率变换器的核心。电 动机没有毛刷,功率变换器没有双极功率变换器的故障。开关磁阻电动机传 动可以在缺相的情况下运行,它是依靠电动机和功率变
45、换器相位独立性来实 现的。转子上没有绕组,以至于转子上没有铜损和很小的铁损。因为不需要 冷却转子,所以很容易冷却电动机。由开关磁阻电动机传动的采煤机正在不 断发展。本章介绍了发展的样机。ii系统组成电牵引采煤机的开关磁阻电动机传动是一个双垂开关磁阻电动机并联 传动系统。这个系统是由两个开关磁阻电动机,一个控制箱,这个控制箱是 安装在功率变换器和控制器上。采用的开关磁阻电动机是三相12/8结构的开 关磁阻电动机,如图一所示。双重开关磁阻电动机分别包装在防爆外壳内。 电动机的额定功率是40kw ,转速是1155r/min ,调速范围是 1 oor/min 1500r/min。图一:三相12/8结构
46、的开关磁阻电动机功率变换器是由两个三相不对称桥式变换器并列组成。igbts是电路的 主要开关元件。经整流后三相交流380v电源提供给功率变换器。功率变换 器的主要电路如图二所示。1o380 vthree-phase rectifierosi j+=c2svd1 s32vd3 ssj t 2vdsa1b1c1vd2不【s2 vd4疋【s4 vd&2ks6vd5图二:功率变换器的主要电路控制器由转子位置检测电路,整流电路,电流和电压保护电路,主要开 关的门极驱动电路和闭环调速数字控制器和负荷均衡分配组成。iii 控制方法采用同一个牵引方法,双重开关磁阻电动机通过传送设备用來驱动采煤 机,来
47、确保双重开关磁阻电动机的转子速度同步运行。并联驱动的双重开关磁阻电动机的闭环转子调速回路可以通过比例积 分算法来实现。在开关磁阻电动机1中,功率变换器主要开关的触发信号是 通过pwm信号调制的。比较给定的转子速度和实际的转子速度,pwm的 占空比调节如下:e = ng - nf(1)= ek + kp (ek 兔)(2)+ ad1(jt)(3)其中,件是给定的转子速度,竹是实际的转子速度,f是转子速度的差。在k时刻内,开关磁阻电动机1pwm信号占空比的增量。k】是积分 系数,& 比例系数,耳转子速度在k时间内的差。转子速度在kj时 间内的差,d响在k时刻内,开关磁阻电动机1pwm信号占
48、空比,在kl 时刻内,开关磁阻电动机1pwm信号占空比。开关磁阻电动机传动系统的输出功率和功率变换器的电流成正比,如下 所示:a x 4(4)其中,出是开关磁阻电动机传动系统的输出功率,厶功率变换器的平 均直流电流。在开关磁阻电动机2屮,功率变换器主要开关的触发信号是通过pwm 信号调制的。双重开关磁阻电动机之间的负荷均衡分布是通过模糊逻辑算法 来实现的。在模糊逻辑调节器中有两个输入控制参数,一个是双重开关磁阻 电动机之间的功率变换器的平均电流的偏差,另一个是双重开关磁阻电动机 之间的功率变换器的平均直流电流的偏差的变化。输出控制参数是开关磁阻 电动机2 pwm信号占空比的增量。电牵引采煤机双
49、重开关磁阻电动机并列 传动系统的方框图见图三所示。rotor speedgiven图三:电牵引采煤机并列传动系统的方框图功率变换器平均直流电流在双重开关磁阻电动机之间的偏差在九时刻为:(5)其中,在心:时刻,功率变换器在开关磁阻电动机1中实际平均直流电流, z戒在f人时刻,功率变换器在开关磁阻电动机2中实际平均直流.双重开关磁阻电动机在汕寸刻的功率变换器平均直流电流的偏差的变量 为:其中,是双重开关磁阻电动机在心时刻的功率变换器平均电流的偏差。开关磁阻电动机2在tr时的pwm信号的占空比为:d?" = dm、+ ad2fn(7)其屮,ad®在柿寸刻的pwm信号占空比的增量,dm门是开关磁阻电动 机2在q时刻的pwm信号的占空比。模糊逻辑算法用以下来表示:其中,方为模糊集合开关磁阻电动机间的功率变换器的平均直流电流的相对误差,ec为模糊集合开关磁阻电动机间的功率变换器的平均直流电流的相对误差的变量,0为模糊集合中开关磁阻电动机2 pwm信号占空比的增量。开关磁阻电动机间的功率变换器的平均直流电流的相对误差在5, +5区间内的连续偏差可以转变为分散偏差。公式如下:e = 1ntkj et10220(9)(10)开关磁阻电动机间的功率变换器的平均育 流电流的相对误差在区间内 的连续变量可以转变为分散变量。公式如下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态农业董事长聘任合同范文
- 居民区废水处理施工合同
- 2024年度建筑工程施工合同的详细标的与属性3篇
- 2024年度工程设备采购合同技术参数确认及其违约责任2篇
- 2024年度个人厂房转让违约责任合同3篇
- 2024年度体育赛事赞助与许可合同
- 2024年度建筑泥工班组外包合同2篇
- 二零二四年度碳排放交易合同协议2篇
- 2024年服装原材料供应合同3篇
- 2024年度智能穿戴设备采购及技术服务合同
- 《失去》写作指导
- 人教版PEP四年级英语上册第五单元Dinners-ready第二课时教案
- 2023年工业固体废物规范化培训课件-固废相关法律的更新
- 仓库物料的先进先出(FIFO)管理培训如何做到先进先出
- 小学四年级上册期中家长会课件
- GJB9001C质量手册+程序文件+记录清单
- 国际货运代理行业分析
- 钢筋质量检验规范
- 2023年青岛港湾职业技术学院高职单招(数学)试题库含答案解析
- GB/T 3733.1-1983卡套式端直通管接头
- GB/T 3279-2009弹簧钢热轧钢板
评论
0/150
提交评论