阶线性ODE课件_第1页
阶线性ODE课件_第2页
阶线性ODE课件_第3页
阶线性ODE课件_第4页
阶线性ODE课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、阶线性ODE一阶线性微分方程 机动 目录 上页 下页 返回 结束 第2.2节 第四章 阶线性ODE一、一阶线性微分方程一、一阶线性微分方程一阶线性微分方程标准形式:)()(ddxQyxPxy若 Q(x) 0, 0)(ddyxPxy若 Q(x) 0, 称为非齐次方程非齐次方程 .1. 解齐次方程分离变量xxPyyd)(d两边积分得CxxPylnd)(ln故通解为xxPeCyd)(称为齐次方程齐次方程 ;机动 目录 上页 下页 返回 结束 阶线性ODE对应齐次方程通解xxPeCyd)(齐次方程通解非齐次方程特解xxPCed)(2. 解非齐次方程)()(ddxQyxPxy用常数变易法常数变易法:,)

2、()(d)(xxPexuxy则xxPeud)()(xPxxPeud)()(xQ故原方程的通解xexQexxPxxPd)(d)(d)(CxexQeyxxPxxPd)(d)(d)(y即即作变换xxPeuxPd)()(xxPexQxud)()(ddCxexQuxxPd)(d)(两端积分得机动 目录 上页 下页 返回 结束 阶线性ODE例例1. 解方程 .) 1(12dd25xxyxy解解: 先解,012ddxyxy即1d2dxxyy积分得,ln1ln2lnCxy即2) 1( xCy用常数变易法常数变易法求特解. 令,) 1()(2xxuy则) 1(2) 1(2 xuxuy代入非齐次方程得21) 1(

3、 xu解得Cxu23) 1(32故原方程通解为Cxxy232) 1(32) 1(机动 目录 上页 下页 返回 结束 阶线性ODE例例2. 求方程的通解 .解解: 注意 x, y 同号,d2d,0 xxxx时当yyxyx2dd2yyP21)(yyQ1)(由一阶线性方程通解公式通解公式 , 得ex yy2dey1yy2dCxlnd故方程可变形为0d2d3yyxyyxxyy1y1 lndCy 所求通解为 )0(CCeyyxyCyln这是以x为因变量, y为 自变量的一阶线性方程机动 目录 上页 下页 返回 结束 阶线性ODE二、伯努利二、伯努利 ( Bernoulli )方程方程 伯努利方程的标准形

4、式:)1,0()()(ddnyxQyxPxynny以)()(dd1xQyxPxyynn令,1 nyzxyynxzndd)1 (dd则)()1 ()()1 (ddxQnzxPnxz求出此方程通解后,除方程两边 , 得换回原变量即得伯努利方程的通解.解法解法:(线性方程)伯努利 目录 上页 下页 返回 结束 阶线性ODE例例4. 求方程2)ln(ddyxaxyxy的通解.解解: 令,1 yz则方程变形为xaxzxzlndd其通解为ez 将1 yz1)ln(22xaCxyxxd1exa)ln(xxd1Cx d2)ln(2xaCx代入, 得原方程通解: 机动 目录 上页 下页 返回 结束 阶线性ODE

5、内容小结内容小结1. 一阶线性方程)()(ddxQyxPxy方法1 先解齐次方程 , 再用常数变易法.方法2 用通解公式CxexQeyxxPxxPd)(d)(d)(,1 nyu令化为线性方程求解.2. 伯努利方程nyxQyxPxy)()(dd)1,0(n机动 目录 上页 下页 返回 结束 阶线性ODE思考与练习思考与练习判别下列方程类型:xyyxyxyxdddd) 1()ln(lndd)2(xyyxyx0d2d)()3(3yxxxy0d)(d2)4(3yxyxyyxxyxydd)2ln()5(提示提示:xxyyydd1 可分离 变量方程xyxyxylndd齐次方程221dd2xyxxy线性方程

6、221dd2yxyyx线性方程2sin2ddyxxyxxy伯努利方程机动 目录 上页 下页 返回 结束 阶线性ODE备用题备用题1. 求一连续可导函数)(xf使其满足下列方程:ttxfxxfxd)(sin)(0提示提示:令txuuufxxfxd)(sin)(0则有xxfxfcos)()(0)0(f利用公式可求出)sin(cos21)(xexxxf机动 目录 上页 下页 返回 结束 阶线性ODE2. 设有微分方程, )(xfyy其中)(xf10,2 x1,0 x试求此方程满足初始条件00 xy的连续解.解解: 1) 先解定解问题10, 2xyy00 xy利用通解公式, 得xeyd1dd2Cxex

7、)2(1CeexxxeC12利用00 xy得21C故有) 10(22xeyx机动 目录 上页 下页 返回 结束 阶线性ODE2) 再解定解问题1,0 xyy1122) 1 (eyyx此齐次线性方程的通解为) 1(2xeCyx利用衔接条件得) 1(22eC因此有) 1() 1(2xeeyx3) 原问题的解为y10),1 (2xex1,) 1(2xeex机动 目录 上页 下页 返回 结束 阶线性ODE( 雅各布第一 伯努利 ) 书中给出的伯努利数在很多地方有用, 伯努利伯努利(1654 1705)瑞士数学家, 位数学家. 标和极坐标下的曲率半径公式, 1695年 版了他的巨著猜度术,上的一件大事,

8、 而伯努利定理则是大数定律的最早形式. 年提出了著名的伯努利方程, 他家祖孙三代出过十多 1694年他首次给出了直角坐 1713年出 这是组合数学与概率论史此外, 他对双纽线, 悬链线和对数螺线都有深入的研究 .阶线性ODE齐次方程 机动 目录 上页 下页 返回 结束 第2.3节 第四章 阶线性ODE一、齐次方程一、齐次方程形如)(ddxyxy的方程叫做齐次方程齐次方程 .令,xyu ,xuy 则代入原方程得,ddddxuxuxy)(dduxuxuxxuuud)(d两边积分, 得xxuuud)(d积分后再用xy代替 u, 便得原方程的通解.解法:分离变量: 机动 目录 上页 下页 返回 结束

9、阶线性ODE例例1. 解微分方程.tanxyxyy解解:,xyu 令,uxuy则代入原方程得uuuxutan分离变量xxuuuddsincos两边积分xxuuuddsincos得,lnlnsinlnCxuxCu sin即故原方程的通解为xCxysin( 当 C = 0 时, y = 0 也是方程的解)( C 为任意常数 )机动 目录 上页 下页 返回 结束 阶线性ODE例例2. 解微分方程.0dd)2(22yxxyxy解解:,2dd2xyxyxy方程变形为,xyu 令则有22uuuxu分离变量xxuuudd2积分得,lnln1lnCxuuxxuuudd111即代回原变量得通解即Cuux )1(

10、yCxyx)(说明说明: 显然 x = 0 , y = 0 , y = x 也是原方程的解, 但在(C 为任意常数)求解过程中丢失了. 机动 目录 上页 下页 返回 结束 阶线性ODEoyx可得 OMA = OAM = 例例3. 在制造探照灯反射镜面时,解解: 设光源在坐标原点,则反射镜面由曲线 )(xfy 绕 x 轴旋转而成 .过曲线上任意点 M (x, y) 作切线 M T,由光的反射定律:入射角 = 反射角xycotxyy22yxOMTMAPy取x 轴平行于光线反射方向,从而 AO = OMOPAP 要求点光源的光线反 射出去有良好的方向性 , 试求反射镜面的形状. 而 AO 于是得微分

11、方程 : xyy22yx 机动 目录 上页 下页 返回 结束 阶线性ODE利用曲线的对称性, 不妨设 y 0,21ddyxyxyx, vyx 则,yxv 令21ddvyvyyvyvyxddddCyvvlnln)1(ln2积分得故有1222CvyCy, xvy代入得)2(22CxCy (抛物线)221)(vvCyCyvv21故反射镜面为旋转抛物面.于是方程化为(齐次方程) 机动 目录 上页 下页 返回 结束 阶线性ODE顶到底的距离为 h ,hdC82说明说明:)(222CxCy2,2dyhCx则将这时旋转曲面方程为hdxhdzy1642222hd若已知反射镜面的底面直径为 d ,代入通解表达式

12、得)0,(2CoyxA机动 目录 上页 下页 返回 结束 阶线性ODE( h, k 为待 *二、可化为齐次方程的方程二、可化为齐次方程的方程111ddcybxacybxaxy)0(212cc,. 111时当bbaa作变换kYyhXx,dd,ddYyXx则原方程化为 YbXaYbXaXY11ddckbha111ckbha令 0ckbha0111ckbha, 解出 h , k YbXaYbXaXY11dd(齐次方程)定常数), 机动 目录 上页 下页 返回 结束 阶线性ODE,代入将kyYhxX求出其解后, 即得原方 程的解.,. 211时当bbaa原方程可化为 1)(ddcybxacybxaxy

13、令, ybxavxybaxvdddd则1ddcvcvbaxv(可分离变量方程)注注: 上述方法可适用于下述更一般的方程 111ddcybxacybxafxy)0(212cc)0( b机动 目录 上页 下页 返回 结束 阶线性ODE例例4. 求解64ddyxyxxy52xy解解:04 kh令,5, 1YyXxYXYXXYdd得再令 YX u , 得令06 kh5, 1kh得XXuuudd112积分得XCuuln)1ln(2/1arctan代回原变量, 得原方程的通解:机动 目录 上页 下页 返回 结束 阶线性ODE15arctanxy2151ln21xy) 1(lnxC52xy利用得 C = 1

14、 , 故所求特解为15arctanxy22)5() 1(ln21yx思考思考: 若方程改为 ,64ddyxyxxy如何求解? 提示提示:. yxv令第四节 目录 上页 下页 返回 结束 阶线性ODE),(yxfy 可降阶高阶微分方程 机动 目录 上页 下页 返回 结束 第2.4节)()(xfyn),(yyfy 第四章 阶线性ODE一、一、)()(xfyn令,) 1( nyz)(ddnyxz则因此1d)(Cxxfz即1) 1(d)(Cxxfyn同理可得2)2(d Cxyn1d)(Cxxfxd xxfd)(依次通过 n 次积分, 可得含 n 个任意常数的通解 ., )(xf21CxC型的微分方程型

15、的微分方程 机动 目录 上页 下页 返回 结束 阶线性ODE例例1. .cos2xeyx 求解解解: 12cosCxdxeyx 12sin21Cxexxey241xey2811121CC此处xsin21xC32CxCxcos21CxC机动 目录 上页 下页 返回 结束 阶线性ODE),(yxfy 型的微分方程型的微分方程 设, )(xpy ,py 则原方程化为一阶方程),(pxfp 设其通解为),(1Cxp则得),(1Cxy再一次积分, 得原方程的通解21d),(CxCxy二、二、机动 目录 上页 下页 返回 结束 阶线性ODE例例2. 求解yxyx 2)1(2,10 xy3 0 xy解解:

16、),(xpy 设,py 则代入方程得pxpx2)1(2分离变量)1(d2d2xxxpp积分得,ln)1(lnln12Cxp)1(21xCp即,3 0 xy利用, 31C得于是有)1(32xy两端再积分得233Cxxy利用,10 xy, 12C得133xxy因此所求特解为机动 目录 上页 下页 返回 结束 阶线性ODE三、三、),(yyfy 型的微分方程型的微分方程 令),(ypy xpydd 则xyypddddyppdd故方程化为),(ddpyfypp设其通解为),(1Cyp即得),(1Cyy分离变量后积分, 得原方程的通解21),(dCxCyy机动 目录 上页 下页 返回 结束 阶线性ODE

17、例例3. 求解.02 yyy代入方程得,0dd2 pyppyyyppdd即两端积分得,lnlnln1Cyp,1yCp 即yCy1(一阶线性齐次方程)故所求通解为xCeCy12解解:),(ypy 设xpydd 则xyypddddyppdd机动 目录 上页 下页 返回 结束 阶线性ODE例例4. 解初值问题解解: 令02 yey,00 xy10 xy),(ypy ,ddyppy 则代入方程得yeppydd2积分得1221221Cepy利用初始条件, 0100 xyyp, 01C得根据yepxydd积分得,2Cxey, 00 xy再由12C得故所求特解为xey1得机动 目录 上页 下页 返回 结束 阶线性ODE内容小结内容小结可降阶微分方程的解法 降阶法)(. 1)(xfyn逐次积分),(. 2yxfy 令, )(xpy xpydd 则),(. 3yyfy 令, )(ypy yppydd 则机动 目录

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论