朴素贝叶斯python代码实现_第1页
朴素贝叶斯python代码实现_第2页
朴素贝叶斯python代码实现_第3页
朴素贝叶斯python代码实现_第4页
朴素贝叶斯python代码实现_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、朴素贝叶斯优点:在数据较少的情况下仍然有效,可以处理多类别问题缺点:对于输入数据的准备方式较为敏感适用数据类型:标称型数据贝叶斯准则:表示某个由心y表云的数据点,该数据点来自类别q的概率 如果p(cY xty)> p(c2 | x7y),那么属于类别 如果p(cr x,y) < p(c2 |x?y),那么属于类别6使用朴素贝叶斯进行文档分类朴素贝叶斯的一般过程(1 )收集数据:可以使用任何方法。本文使用RSS源(2)准备数据:需要数值型或者布尔型数据(3)分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好(4 )训练算法:计算不同的独立特征的条件概率(5 )测试算法:

2、计算错误率(6 )使用算法:一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴 素贝叶斯分类器,不一定非要是文本。准备数据:从文本中构建词向量摘自机器学习实战。'my','dog','has','flea','problems','help','please',0'maybe',' no t','take','him','to','dog','park',&#

3、39;stupid',1'my','dalmatio n','is','so','cute',T,'love','him',0'stop','posti ng','stupid','worthless','garbage'.'mr','licks','ate','my','steak','how',&#

4、39;to','stop','him',0'quit','buyi ng','worthless','dog','food','stupid'以上是六句话,标记是 0句子的表示正常句,标记是 1句子的表示为粗口。我们通过分析 每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。在bayes.py文件中添加如下代码:pyth onview pla in copy1. # coding=utf-82.4.p>ostingList =

5、9;my' , 'dog',h5.'maybe' , 'not','take' , 'him'6.'my','dalmation','is' , 'so'7.'stop','posting','stupid',8.'mr','licks','ate' , 'my',9.'quit','buying',&

6、#39;worthless'10. classVec =0, 1,0, 1,0, 111.returnpostingList, classVec3. def loadDataSet():'has' , 'flea' , 'problems' , 'help','to' , 'dog','park','stupid','cute' , T,'love','him','worthless','

7、garbage','steak' , 'how' , 'to' , 'stop' , 'him','dog' , 'food' , 'stupid' # 1代表侮辱性文字,0代表正常言论'please',12.13. def createVocabList(dataSet):14. vocabSet = set()15. for documentin dataSet:16. vocabSet = vocabSet | set(document)

8、17. return list(vocabSet)18.18. def setOfWords2Vec(vocabList, inputSet):19. returnVec = 0 * len(vocabList)20. for word in inputSet:21. if word in vocabList:22. returnVecvocabList.index(word) = 123. else :% word24. print "the word: %s is not in my Vocabulary!"25. return returnVec运行结果:import

9、 bayesaaa listOPosts, listClasses = bayes*loadDataSet()aaa myVocabList = bsyes*createVocabList(ItstOPosts)aaa myVocabList1 cute1, 1 love' , 1 help' , 1 garbage''quit', 1IT, 1 problemsT, 'is1, 1 park' , 'stop ','flea 1 , 'dalmation1 , 1licks' , 'foo

10、dT, 'not', 1hin' , 'buying' , 'posting', Thas ','worthless' , Tate 1 , 'to1, 'naybe', Tplease', 1 dog' , 'how 1 , 'stupid 1 , 'so1, Tt mke、* 'nr ' steak 'nyr http:/blog. csdn. net/Jay_Xioaaa bayes. setOfWords2Vec(myV

11、ocdbLtst, l_tstOPosts0)o, G, 3, Qt e, ”1, o, o, o, -1, e, o, o, e, o, o, ef -if o, et o, o, -1,0, 6 0. 0, S 第 7aaa bayes * setOfWords2Vec(myVocabLtst a l_istOPosts3)o, o, o, -1, e, 6, o, o, e, -1, e>, e, o, g, o, o, -i, 0, -1, 0, o, 0, a, e, q, -1, 0 趴 0, 0训练算法:从词向量计算概率pyth onview pla in copy1. #

12、朴素贝叶斯分类器训练函数2. # trainMatrix:文档矩阵,trainCategory:由每篇文档类别标签所构成的向量3. def trainNBO(trainMatrix, traincategory):4. numTrainDocs = len(trainMatrix)5. numWords = len(trainMatrix0)6. pAbusive = sum(trainCategory) / float(numTrainDocs)7. p0Num = zeros(numWords);8. p1Num = zeros(numWords);9. p0Denom = 0.0;10.

13、 p1Denom = 0.0;11. for i in range(numTrainDocs):12. if trainCategoryi = 1:13. p1Num += trainMatrixi14. p1Denom += sum(trainMatrixi)15. else :16. p0Num += trainMatrixi17. p0Denom += sum(trainMatrixi)18. p1Vect = p1Num / p1Denom19. p0Vect = p0Num / p1Denom20. return p0Vect, p1Vect, pAbusive运行结果:from n

14、unpy import *reload(bayes)cmodule 'bayes' fron T bayes + pyb >>» listOPosts* listclasses = bayes.loadDa»> nyvocabList = bayes*createvocabLtst(ItstOPosts)aaa trainMat=>» far postinDoc in listQPosts:.trainMat,append(bayes,setOfWords2Vec(nyVocabLtst,posttnDoc)i a- a&#

15、187;> pOV, plV, pAb = byes.trainNBettrainMat* listclasses)pAbp6Varray( 0.0526315S,0.95263150*0.05263158> -8,0.65263158, 0.O5Z6315B, s.05nel9Tay Xio >6.052631S8,0.05263158,0.05263158,0.85263158. ®t-o.,0.19526316, -0. O* 目*05263158,6.05263158, 0.0526315B, -0.* 0.05263158,-o.>0.0526315

16、8,fl.O52631S0, '0,0,eS263158r -fi.,0.052631S8,0.05263158,0.15789474)>» plVarray(-fl., -0., -0. Q,05263158G.05263158,O, -e. -0.t 3*05253158,0.65263158,-e.»-e.* -飢*3.05263154C.0526315Bf0.05263158,0.0526315B,0.05263158, -B”6.1G5263L6,V.,0,0S26315B,0.05263158,弋*t0.10S26S16,Ot 0,15789474

17、, -Q.,9+052&3158>-6., *0.j)-o,测试算法:根据现实情况修改分类器上一节中的trainNBO函数中修改几处:pONum = on es( num Words);pINum = on es( num Words);pODe nom = 2.0;p1De nom = 2.0;p1Vect = log(p1Num / p1De nom)p0Vect = log(p0Num / p1De nom)pyth onview pla in copy1. #朴素贝叶斯分类器训练函数2. # trainMatrix:文档矩阵,trainCategory:由每篇文档类别标签

18、所构成的向量3. def trainNBO(trainMatrix, trainCategory):4. numTrainDocs = len(trainMatrix)5. numWords = len(trainMatrixO)6. pAbusive = sum(trainCategory) / float(numTrainDocs)7. pONum = ones(numWords);8. p1Num = ones(numWords);9. pODenom = 2.0;10.11.pIDenom = 2.0;12.for i in range(numTrainDocs): if trainC

19、ategoryi = 1:13.14.pINum += trainMatrixipIDenom += sum(trainMatrixi)15.else :16.17.p0Num += trainMatrixip0Denom += sum(trainMatrixi)1.p1Vect = log(p1Num / p1Denom)p0Vect = log(p0Num / p1Denom)return p0Vect, p1Vect, pAbusive22.朴素贝叶斯分类函数23.24.def classifyNB(vec2Classify, p0Vec, p1Vec, pClass

20、1):25.p1 = sum(vec2Classify * p1Vec) + log(pClass1)p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)26.27.if p1 > p0:return 128.else :2.defreturn 0testingNB():listOPosts, listClasses = loadDataSet()33.34.myVocabList = createVocabList(listOPosts)trainMat =8.39.for postinDoc i

21、n listOPosts:trainMat.append(setOfWords2Vec(myVocabList, postinDoc)p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses)40.41.testEntry ='love' , 'my' , 'dalmation' thisDoc = array(setOfWords2Vec(myVocabList, testEntry)42.print testEntry,'classified as:',classi

22、fyNB(thisDoc, p0V, p1V, pAb)6.testEntry = 'stupid' , 'garbage' thisDoc = array(setOfWords2Vec(myVocabList, testEntry)print testEntry,'classified as:',classifyNB(thisDoc, p0V, p1V, pAb)运行结果:»> reloadbayes<module 1 ibayes1 from 'bayes.py' >»

23、> bayes )ove1,,dalmation1 'classified as: - 0'茸tupid'r 'garbage'1准备数据:文档词袋模型词集模型(set-of-words model):每个词是否出现,每个词只能出现一次词袋模型(bag-of-words model ):一个词可以出现不止一次pyth onview pla in copy.5.6.7.#朴素贝叶斯词袋模型def bagOfWords2VecMN(vocabList, inputSet):returnVec = 0 * len(vocabList)for

24、 word in inputSet:if word in vocabList: returnVecvocabList.index(word) += 1 return returnVec示例:使用朴素贝叶斯过滤垃圾邮件(1)收集数据:提供文本文件(2)准备数据:将文本文件解析成词条向量(3)分析数据:检查词条确保解析的正确性(4) 训练算法:使用我们之前建立的trainNB0()函数(5 )测试算法:使用 classifyNB(),并且构建一个新的测试函数来计算文档集的错误率(6)使用算法:构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上准备数据:切分文本使用正则表达式切分句子&g

25、t;» Import re>>> nySent = 1 This book is the best book on Python or M.L* I have ever laid eyes upon,'>» regEx = pilef *)listOfTokens = regEx.split(nySent)>» listOfTokens1bcok"展由好bodM叩Eon)qykythorT . or1,坤X fLl f' ,Thave', 'ever'?, 1 eyes', T

26、upon',''>» tok.lowerf) for tok in listOfTokens if len(tok) > 0(thts', 1 book" ±1 the' # 1 best1 , * book' # lon, * python'T or*, W, fll #','have', 'ever'# Laid1, 'eyes', Tupon'测试算法:使用朴素贝叶斯进行交叉验证pyth onview pla in copy1.

27、#该函数接受一个大写字符的字串,将其解析为字符串列表2.#该函数去掉少于两个字符的字符串,并将所有字符串转换为小写3.def textParse(bigString):4.import re5.listOfTokens = re.split(r'W*', bigString)6.return tok.lower()for tok in listOfTokensiflen(tok) > 27.8.#完整的垃圾邮件测试函数9.def spamTest():10.docList =11.classList =12.fullText =13.#导入并解析文本文件14.for i

28、in range(1,26):15.wordList = textParse(open('email/spam/%d.txt'% i).read()16.docList.append(wordList)17.fullText.extend(wordList)18.classList.append(1)19.20.wordList = textParse(open('email/ham/%d.txt'% i).read()21.docList.append(wordList)22.fullText.extend(wordList)23.classList.appe

29、nd(0)24.25.vocabList = createVocabList(docList)26.trainingSet = range(50)27.testSet =28.#随机构建训练集29.for i in range(10):30.randIndex = int(random.uniform(0, len(trainingSet)31.testSet.append(trainingSetrandlndex)32.del (trainingSetrandlndex)33.34.trainMat =35.trainClasses =36.for docIndex in trainingSet:37.trainMat.append(setOfWords2Vec(vocabList, docListdoclndex)38.trainClasses.append(classListdoclndex)39.40.pOV, p1V, pSpam = trainNBO(array(trainMat), array(tra

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论