版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第7章 公共交通场站规划方法研究 - 16- 第7章 公共交通场站规划方法研究7.1 引言对城市公共交通场站的规划主要包括公共汽车起(终)点站、中途站点、换乘枢纽站和保养修理场等四种,其规划应结合城市规划的合理布局,计划用地进行,做到保障城市公共交通畅通安全、使用方便、经济合理的要求。其中:、公共汽车的起、终点站选址是公交线网规划的重要约束条件,可在公交路线优化后,根据路线及车辆配置情况确定位置及其规模; 、公交中途站点的规划可以在公交起、终点位置和路线走向确定以后,根据最优站距和车站长度限制等情况确定;、换乘枢纽站点一般是在公交路线作为对外交通或大运量交通系统的集散系统时考虑规划设置;、车辆
2、保养场一般在所辖线网的重心处。本章主要介绍公交车辆起(终)点的设置原则以及公交路线中途间站点的优化布设、公共交通客运枢纽的选址规划、大容量捷运交通(MRT)公交接运枢纽规划、公交自行车换乘枢纽规划的相关模型与方法。7.2 公共汽车起、终点和中途站点规划公交汽车的起、终点及中途站点的位置、间距、设计和管理对公交系统作用的发挥有着很大影响。尤其是车站间距,是影响车辆运营速度和调度计划的重要因素。本节重点研究公交起、终点站规划的原则和中途站点间距优化的模型方法。7.2.1 公交车站起、终点规划原则公交车辆起、终站点的主要功能是为线路上的公交车辆在开始和结束营运、等候调度以及下班后提供合理的停放场地的
3、必要场所。它既是公交站点的一部分,也可以兼具车辆停放和小规模保养的用途。对起、终站点的规划主要包括起、终点的位置选择、规模的确定以及出入口道路的设置等几方面内容,规划时应遵循以下原则:、公交起、终点站的设置应与城市道路网的建设及发展相协调,宜选择在紧靠客流集散点和道路客流主要方向的同侧;、公交起、终点站的选址宜靠近人口比较集中、客流集散量较大而且周围留有一定空地的位置,如居住区、火车站、码头、公园、文化体育中心等等,使大部分乘客处在以该站点为中心的服务半径范围内(通常为350米),最大距离不超过700800米;、起、终点站的规模应按所服务的公交线路所配营运车辆的总数来确定。一般配车总数(折算为
4、标准车)大于50辆的为大型站点;2650辆的为中型站点;小于26辆的为小型站点;、与公交起、终站点相连的出入口道应设置在道路使用面积较为富裕、服务水平良好的道路上,尽量避免接近平面交叉口,必要时出入口可设置信号控制,以减少对周边道路交通的干扰。7.2.2 公交车中途站点规划(1) 公交车中途站点规划原则公交车辆的中途站点规划在公交车辆的起、终点及线路走向确定以后进行,规划的原则为:、中途站点应设置在公共交通线路沿途所经过的各主要客流集散点上;、中途站点应沿街布置,站址宜选择在能按要求完成车辆的停和行的两项任务的地方;、交叉口附近设置中途站点时,一般设在过交叉口50米以外处,在大城市车辆较多的主
5、干道上,宜设在100米以外处;、中途站点的站距受到乘客出行需求、公交车辆的运营管理、道路系统、交叉口间距和安全等多种因素的影响,应合理选择,平均站距在500600米之间,市中心区站距宜选择下限值,城市边缘地区和郊区的站距宜选择上限值;百万人口以上的特大城市,站距可大于上限值;不同的车辆类型和区域条件下站间距范围如表711所示。表71 典型的车型与站距分类表公交车辆与服务类型最大设计速度(km/h)站台速度(km/h)站间距(直线距离)(m)CBD地区内非CBD地区传统系统现代系统市内公共汽车801051323150300150200300460区域性公共汽车801052030150300360
6、9006001500快速公共汽车801052550*1200900015004500有轨系统65951325150300150250300460轻轨系统8010525553006006001500地铁系统801102555300750500100010002500区域快速MRT110135559060090018009000*注:通常只有一到二个首未站在CBD内或与CBD相连。国内公交线路站距的范围如表721所示。表72 国内各种公共交通系统的站距(线路距离:m)公共交通系统市区线郊区线公共汽车与电车5008008001000公共汽车大站快车1500200015002500中运量快速MRT交通
7、800100010001500大运量快速MRT交通1000120015002000(2) 中途站点布局规划方法对公共交通中途站点的规划主要是对中途站点间距的研究。一般而言,较长的车站间距可提高公交车的平均运营速率,并减少乘客因停车造成的不适,但乘客从出行起点(终点)到上(下)车站的步行距离增大,并给换乘出行带来不便;站间距缩短则反之。最优站间距规划的目标是使所有乘客的“门到门”出行时间最小(如图71所示)。 图71乘客出行时间与站距的关系基本图式公交路线站间距的优化主要考虑乘客总出行时间的影响,并与车辆性能和运营要求有关。对于大容量捷运交通(MRT)系统,车站的造价也是一个重要的影响因素。同时
8、,进行车站间距优化还应考虑站间距对需求的影响和各种客运交通方式之间的协调。从长期的影响来看,站间距的增大会使乘客短途出行量减少,吸引长距离的乘行。例如在进行城市地铁系统站距的规划中,应考虑到城市引入地铁系统的目的是对现有地面交通方式的补充,而非与其竞争。因此在车站选址规划中,要求线路的站距比地面系统的站距大;以鼓励短途乘客使用地面系统。这里以常规公交线路为例,研究在一条线路上,使所有乘客出行时间最小的站间距的求解问题。、最优站距目标函数进行公交中途站点最优站距的规划是以最小化线路上乘客总出行时间为目标,模型可表达为: (71)式中,TA线路上所有乘客的总出行时间(min);T单个乘客的总出行时
9、间(min);P线路上所有乘客的集合。如考虑与站距有关的主要出行时间,则有(72)式中,T1由出行起点到上车站的步行时间(min);T2由下车站到出行终点的步行时间(min);TR出行途中公交车的行驶时间(min);Ts出行途中公交车的停车时间(min)。、模型约束变量分析A、公交车的行驶时间公交车行驶时间可由下式表达: (73)式中,K公交车途中经过的车站数;TP乘客上、下车完成后,公交车司机的操作反应时间及车辆启动时间(s);TIN车辆进出站受干扰的延误时间(s),与道路交通状况、车站类型和使用车站的路线数量有关。DS公交路线的站间距(m);LA车辆加速达到正常速度所需行驶的距离(m);L
10、D车辆由正常速度减速至静止所需行驶的距离(m);VN公交车的正常行驶速度(m/s);B、公交车的停车时间公交车的停车时间受车辆上、下乘客数和乘客上、下车时间的影响较大,计算公式可表达为:(74)式中,TU、TD一个乘客的上、下车时间(min);、站点i的上、下车乘客数(人);、乘客出行的起点、终点站,;、乘客上、下车的平均时间(min),与站台的高低、车门大小、售票方式等有关,取值参见表73和表743。表73 典型的上/下车时间上/下车站台条件售票条件上车时间(每通道乘客)*上车高站台站台入口处售票1.0站台出口处售票2.0低站台单个硬币或代用券3.0多硬币4.0+预付车费, 上车时检票4.0
11、-6.0上车买票6.0-8.0+下车高站台车门处不检票1.0车门处检票1.7低站台检票或办理转车手继2.5-4.0*注:每通道宽55-60cm, 假设每通道平等地利用;表74 多车门上/下车时间统计值车门数(上/下车)每乘客上/下车时间(s)一个车门1.5二个车门0.9三个车门0.7C、乘客到/离站时间设乘客按出行时间最小选取上、下车站,参见图72。图72 乘客的上、下车站示意图则乘客到、离公交站点的最短出行时间为:(75) (76)式中,乘客到、离公交站点的最短出行时间(s);乘客出行起点到站点的距离(m);乘客出行终点到站点的距离(m);VM乘客的步行速度(m/s)。与乘客出行起点相邻的连
12、续两公交站点序列;与乘客出行终点相邻的连续两公交站点序列,;D、总时间计算总时间为乘客到、离公交站点时间与公交车行驶时间之和,可表达为: (77)E、决策变量的约束条件实际计算中,公交站点间距有上下限的约束: (78)其中,考虑乘客到公交车站的最大容忍步行距离,令(79)式中,RS公交中途站点的服务半径(m)。另外,站距不应小于车辆加速达到正常运营速度再减速停止所需的最小行驶距离,如假定加速度与减速度相同,则可表达为:(710)式中,a加速度(m/s2),设车辆尽快地加速,考虑站立乘客的安全与舒适的要求,通常有a1.52m/s2;(3) 中途站点布局规划实例计算公交路线站间距的优化常用模拟搜索
13、的方法确定。假设乘客沿路线均匀分布,VM=1.22m/s,Tp=3.7s,线路总长度为10km,计算得到的最优站距如表75所示。表75 最优站距计算表No.VN(km/h)TIN(s)DS(m)停车情形假设1400500公交专用道2405500港湾式停车3408560港湾式停车44010600路边停车54012640路边停车64015680路边停车74020800路边停车840401050路外停车940601150路外停车102520650混行、干扰较多112530800混行、干扰较多12805700公交专用路可见,车辆速度越快,站间距越大;停车干扰较多时,站间距也将增大。若考虑停车成本(如轮
14、胎摩损,耗油等)与空气污染等因素,站距还会增大。此外,具体规划时还需根据道路条件、交叉口位置调整站点的具体位置。以上结论可知,公交路线站距过大,使非车内时间增加,反之则车内时间增加。以所有乘客的出行时间最小为目标,可求得最优站距值。 7.3 公共交通枢纽选址规划7.3.1 概述公共客运交通枢纽是指公交线路之间、公共交通与其它交通方式之间客流转换相对集中的场所,对公交枢纽的合理布设、规划是改善整个交通系统,从而提高运营效益和解决出行换乘问题的重要步骤。公共交通枢纽通常包括对外交通枢纽和市内交通枢纽两种。(1) 对外交通枢纽对外交通枢纽是市内公共交通与市际交通的联系点,一般在铁路客运站、长途汽车站
15、、轮渡港口、航空港口和城市出入口道路处。这类交通枢纽在城市中的位置相对比较确定。(2) 市内交通枢纽市内交通枢纽一般是城市区域内的集散点,如公共交通之间或公共交通与其它交通方式之间的转换场所,如常规公交与大容量捷运交通(MRT)、自行车的换乘枢纽,多条公交线路汇聚的交点等。合理的公共客运交通枢纽规划对改善城市交通系统,提高运输效益和解决出行换乘问题具有重要的意义。规划的主要内容包括枢纽选址和规模的确定。本节主要研究公共交通枢纽选址优化的一般模型。7.3.2 公共交通枢纽选址优化模型从系统工程的观点,城市公共客运枢纽的选址属于物流中心的选址问题,规划方法大致分为三类:、经验(专家咨询)选址法;、
16、连续型选址模型,如重心模型;、离散型选址模型,如(混合)整数规划法、Bawol-Wolfe法等,从几个备选站址中按目标函数最优从中选取。其中经验选址法是依据专家凭经验和专业知识对相关指标量化后综合分析得到的选址方案,决策结果受专家知识结构、经验及所处时代和社会环境等多方面因素的影响,由于选址分析取决于主观分析,在规划时更适用于对有限备选站点的优化选址;连续选址模型不限于对特定备选集合的选择,自由度较大,但规划时难以考虑实际的土地约束条件,结果往往并不实用;离散型选址模型所需基础数据较多,计算量很大。在规划实践中三种方法经常结合起来应用。(1) 影响公共客运枢纽规划的因素影响公共客运枢纽规划的主
17、要因素包括:、客流需求强度。与公交路线优化相同,客流需求强度是影响公共客运枢纽选址和规模的主要因素;、用地及周围环境条件。公共客运枢纽的布局规划要求占用一定的城市空间,并且与之相连的道路其交通条件和服务水平较好。(2) 公交枢纽选址优化的目标函数假设规划区域内有个备选公交枢纽位置,拟选择个进行建设,则公交枢纽选址优化的目标函数可表达为:(711)式中,规划公交枢纽的备选集合;,备选枢纽的客流集散强度指标,。在不同的条件下,备选枢纽的客流集散强度可用不同的指标反映。、已知城市公交线网的线路客流量城市公交线网的线路客流量已知时,可以较为方便地求得各备选站址的客流集散强度量,其中: (712)式中,
18、Ra经过a的公交路线集合。e(li,lj )公交路线li ,lj 间的换乘量(人) ;e(li,bi)公交路线li与自行车方式bi间的换乘量(人) ;e(li,wa)公交路线li与步行方式wa间的换乘量(人) ;e(li,ou)公交路线li与其它(如对外等)交通方式ou间的换乘量(人) ;各种客流转换类型的权重系数,与规划的枢纽的类型有关。若令,则有: (713)式中,,路线在li站点i的上、下客流量(人)。、已知城市客流OD分布,规划线网不确定当未知规划线网,但已知城市客流OD分布时,可按以下公式估算客流集散强度: (714)式中,qjkOD点j,k间的OD客流量(人);。与前类似,qjk可
19、按所规划的枢纽类型对各方式OD量进行折算。、城市客流OD和规划线网均不确定当未知OD客流和规划线网时,文献2提出了一种实用的方法,即根据经过备选枢纽点的道路网节点或OD对间最(次)短路条数来选取枢纽点。计算方法如下: (715)或: (716)式中,;Q道路网节点集合,节点个数为q;NOD点集合,OD点个数为n;当时,备选枢纽点入选。(3) 选址模型算法分析客运公交枢纽选址方法通常有逐个选址法和枢纽推荐法两种,算法流程参见图73和图74。备选枢纽可根据经验和用地的限制进行选取,也可将所有路网节点列入备选址集,在选址过程中考虑用地的可实现性。总之,枢纽选址模型以经过枢纽的线网客流量或OD量,或最
20、(次)短路径条数最大为优化目标,反映了枢纽选址的关键因素枢纽客流集散强度。图73 逐个选址法流程图计算备选站址的确定所有的可能用地规模及服务范围找出所有对集合进行综合选址决策结 束 图74 枢纽推荐法流程图7.4 大容量捷运公交系统接运枢纽规划本节介绍快速大容量捷运公交系统(MRT)公交接运枢纽选址优化方法。大容量捷运公交系统的公交接运枢纽选址是建立在MRT路线直接吸引客流量已知的基础上的,通过计算各个站点始发的接运路线可能为MRT路线所运送的最大客运量,评价各备选接运站点的优劣。假设MRT线路第i站点的剩余上客量为,剩余下客量(人)为,断面i到i+1的剩余客流(通过)量为,它们之间的位置关系
21、如图75所示。这里假定路段i到j的剩余客流(通过)量(人)为:(717)站点i到j的剩余客流(通过)量(人)为:(718)则站点i到j的剩余客运(周转)量(人·公里)可由下式计算:(719)式中,图75 路线、站点的客流量和剩余客流量示意图MRT路段i到j的距离(公里)。由站点i始发的接运路线可能为MRT路线运送的最大客运量应是它到其余各个轻轨站点间的剩余客运量之叠加。由于MRT交通是一种对于中长距离才有良好客流效益的交通方式,接运公交路线的布设也应体现这种规划思想。因此,应先叠加站点i与距其最远的站点(起点或终点)间的剩余客运量,然后调整MRT路线上的客流量,再叠加站点i到距其次远
22、的站点间的剩余客运量,依次类推。计算中应考虑一条轻轨路线通常都由两个方向组成(图76)。图76 轻轨路线与接运公交线的流向关系图显然,不是MRT路线上所有的车站都需要安排接运路线,当站点剩余客运量太小时()或站点i剩余上、下客量太小时(),设置接运公交线对MRT路线没有意义(甚至有不良影响),对接运公交线路本身也是不经济的。因此,接运站点应满足下面的条件:(720)式中,站点剩余客运量下限(人);(721)式中,站点剩余上、下客量下限(人);此外,公交接运站点的选址还应满足场地的限制条件。MRT-公交接运枢纽也属于公交枢纽,MRT-公交接运枢纽优选以备选站点可能接运的客流量反映站点的集散能力,
23、这与公共交通枢纽规划的目标是一致的。7.5 公交-自行车换乘枢纽规划7.5.1 概述公交-自行车换乘枢纽规划的意义在于:、我国城市居民出行的主要方式是公共交通、自行车和步行,为自行车和公共交通提供换乘停车条件有利于出行渠道的畅通和多样化。、对公共交通系统,在某些情况下设置公交-自行车换乘枢纽可以提高公共交通的吸引力。公共交通的合理步行范围一般不超过500米,当乘车步行距离超过这个范围时,采用自行车换乘公交的出行总时间为:(722)式中,tbb自行车换乘公交的出行总时间(min);tbi自行车存取时间(min);tbo由存车处步行到车站的时间(min);tbw自行车乘行时间(min);tbu出行中公交车的乘行时间(min)。设步行速度为4km/h,自行车车速为14km/h,则不同距离两种方式的出行时间如表76所示。表76 步行和自行车的出行时间出行距离(m)5001000150020002500步行时间(min)7.51522.53037.5自行车骑车时间(min)2.14.16.38.410.6可见,当乘车到站距离较长且具有方便的换乘条件时 ,自行车换乘公交是可能减少出行时间的。尤其是在城市边缘地区和新开发地区,出行密度不高,公交线网较稀,步行到达公交线路的时间可能较长;且这些地区有相当比例出行的出行距离超过了自行车的合理出行范围(一般在7km左右)。因此,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年定制装修费用协议版
- 2024年产品销售代表权合同模板
- 2024年度软件开发与维护战略合作协议3篇
- 2024年城市交通设施建设合作合同范本版B版
- 2024年智能穿戴设备研发与销售合同
- 2024年度文化艺术节赞助与演出合同3篇
- 2024年校园安保人员租赁协议
- 2024年新修订购销合同2篇
- 2024至2030年中国婴幼儿配方奶粉行业投资前景及策略咨询研究报告
- 2024年技术支持与咨询服务合同
- JGJT46-2024《施工现场临时用电安全技术标准》条文解读
- 2024-2030年中国番泻叶供需状况及市场规模预测分析研究报告
- 江苏省环保集团有限公司招聘笔试题库2024
- 人力资源岗位招聘笔试题及解答(某大型央企)
- 预应力混凝土管桩(L21G404)
- 办公耗材采购服务方案(技术方案)
- 西方思想经典导读智慧树知到期末考试答案章节答案2024年湖南师范大学
- MOOC 模拟电子技术基础-华中科技大学 中国大学慕课答案
- 城管协管员笔试考题试题(含答案)大全五篇
- TSAITA 001-2021 人工智能 计算机视觉系统测评规范
- 单悬臂式标志牌结构设计计算书
评论
0/150
提交评论