基于大数据相关性思维的整车试验与质量问题关联性分析_第1页
基于大数据相关性思维的整车试验与质量问题关联性分析_第2页
基于大数据相关性思维的整车试验与质量问题关联性分析_第3页
基于大数据相关性思维的整车试验与质量问题关联性分析_第4页
基于大数据相关性思维的整车试验与质量问题关联性分析_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    基于大数据相关性思维的整车试验与质量问题关联性分析    李涛 吴传洋 李琳摘 要:文章基于大数据关联性思维模式,建立了试验项目-零部件-问题数量模型,分析了整车研发验证试验与质量问题的关联性,如试验项目-零部件、零部件-试验项目等。关键词:大数据思维;试验;关联性:u467.1  :a  :1671-7988(2020)14-112-03abstract: based on the thinking mode of big data relevance, this paper establishes a quantitati

2、ve model of test items-parts- problems, and analyzes the relevance between vehicle r & d verification test and quality problems, such as test items-parts, parts - test items, etc.keywords: big data thinking; test; relevanceclc no.: u467.1  document code: a  article id: 1671-7988(2020)1

3、4-112-03引言每个行业都会在长期的实践、探索过程中总结出自己特有的思维模式及相关理论以指导实践。例如互联网行业近些年就提出了互联网思维、大数据思维等。在当今知识大爆炸时代,跨界思维当属最简单、最便捷的途径,可以快速从其他行业吸纳新思维、新方法、新技术。虽然汽车行业是传统行业,但其知识体系磅礴,可谓海纳百川,跨界借鉴和吸收其他行业的优秀思维模式及相关理论的例子屡见不鲜。例如,在汽车行业发展历程中,从外借鉴航空、航天等领域的技术,内部也有集suv的操控性、轿车的舒适性等各种优点于一身的跨界车(crossover)。汽车研发过程中会进行大量的试验,进而暴露大量质量问题。但是,试验与研发过程质量

4、问题之间未必能确切地直接找到关联原因,因为试验过程受到人、机、料、法、环等多种因素的影响。然而,分析试验与研发过程质量问题之间的关联关系,有助于指导试验策划及试验点检等工作,例如变更变速箱需要做什么试验、驱动耐久试验需要重点点检车辆哪些零部件等,大数据的相关性思维模式正好契合这一分析需求。1 大数据相关性思维简介随着科技的发展,全世界的数据以指数级增长,导致以前的数据处理模式发生巨大变化,思维模式也发生根本性变革,进而形成了大数据思维,主要包括全样思维、非精确思维、相关性思维等,要求尽可能收集全面完整的数据。相关性思维,是一种思维模式,基于全样本数据统计得到事物之间的关联关系。不同于通过因果推

5、理,基于部分准确度较高的样本数据,进行严谨的推理,确定事物之间的因果关系,一般能使用数学模型进行表达。在一个全新汽车研发项目中,仅整车试验项目就上千项,每项试验都针对某项或数项功能、性能进行验证,提出各种各样的研发过程质量问题,在数年研发过程中累积记录的问题数量十分庞大。试验项目和研发过程质量问题之间的关联强弱,有时并不能找到直接的因果关系,例如驱动耐久试验,除了发动机和变速箱问题数量名列前茅,组合仪表的问题数量紧随其后,可能是因为试验现场工程师并不能立即解析组合仪表显示异常,而仅仅提出了组合仪表显示异常。负责设计组合仪表的产品开发工程师,接收到驱动耐久试验提出的质量问题时,可能并不需要紧急应

6、对。无论什么原因,能证明驱动耐久试验和组合仪表显示异常强相关即可。2 试验项目-零部件-问题关联性受大数据关联性思维启发,从研发过程质量问题库中选取试验项目、问题零部件名称两个维度进行统计,建立试验项目-零部件-问题关联模型,如表1所示,也可转换为图1所示。图1中,横坐标代表试验项目,纵坐标代表零部件,垂向坐标代表每个零部件在每个试验项目中被暴露问题的数量。例如,p1零部件在t1试验项目中总共被暴露了问题50次。2.1 试验-高发问题零部件在上述模型中,将某一试验抽取出来,并对零部件依据问题数量进行排序,即可得到图2。此处以驱动耐久试验为例,高发问题依次为tcu、发动机本体、ems、组合仪表、

7、变速器本体等。从图中可以看出,发动机、变速器及相关的tcu、ems等发生变更时,应当实施驱动耐久试验,而同为驱动系统的驱动轴,其问题数量则相对较少,其发生变更时可以视情况决定是否需要实施驱动耐久试验。另一方面,驱动耐久试验工程师在实施试验过程中,应当着重点检tcu、发动机本体、ems、组合仪表、变速器本体等零部件;同时,这些零部件的开发工程师应当着重实时关注驱动耐久试验。如前所述,组合仪表可能只是在这个试验中显示了驱动系统故障,本身并没有什么问题。这就要求驱动耐久试验人员在提出组合仪表问题时,做进一步地问题诊断,找出真因再提出问题。2.2 零部件问题高发试验统计在上述模型中,将某一零部件抽取出

8、来,并对试验依据问题数量进行排序,即可得到图3。此处以变速器为例,高發问题的试验依次为驱动耐久试验、整车综合耐久试验、整车商品性评价等。从图中可以看出,变速器发生变更时,应当优先实施。此外,变速器开发工程师,在研发验证阶段应当着重关注驱动耐久试验、整车综合耐久试验、整车商品性评价等试验。2.3 问题高发零部件统计将上述模型中,某一时期所有零部件问题叠加起来并进行排序,即可得到图4。可以看出,avnt问题数量遥遥领先,一方面可以指导高层管理者着重关切avnt开发团队的技术能力和管理水平,另一方面也提示试验领域近期各类试验应当着重点检avnt,并且反省试验过程是否有操作不当,或问题判定是否合理。2.4 问题高发试验统计将上述模型中,某一时期所有试验暴露的问题叠加起来并进行排序,即可得到图5。可以看出,综合耐久试验作为综合性最高、投入资源最大的试验,暴露的问题数量也最多。但是,是否最有实施价值,还需要结合单台次问题暴露数量来看。如图6所示,综合耐久试验单台次问题暴露数量名列第二。3 小结试验对整车的研发具有举足轻重的作用,是开发流程中极其重要的环节,其试验策划项目的精准性、以及试验过程的点检倾向性,对研发过程质量问题的暴露,有十分重要的影响。本文基于大数据关联性思维,总结出试验-零部件-问题关联性分析方法,分析了历年来研发过程中暴露的质量问题数据库,虽然并不清楚各维度之间的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论