版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实验测量不确定度与数据处理大学物理实验主要内容1-1实验测量的基本知识1-2实验测量不确定度的评定1-3有效数字及其运算1-4实验测量数据的处理1-1测量的基本知识一、物理测量的基本概念运用各种物理仪器和物理方法把待测未知量与已知标准单位同类量作比较,即待测量是该计量单位的多少倍。大多数的测量结果不但有数值而且有单位。816光大证券乌龙指事件程序把买入24个成分股,写成了买入24组180ETF成分股,结果生成巨量订单。2002年11月,一名经纪人看错了爱尔兰低价航空公司Ryanair的股票价格的货币单位,把先令和欧元弄混,结果该股票在伦敦市场的报价上涨了61%,从404.5先令上升到653.7
2、先令。1.直接测量与间接测量 p凡是可以直接用计量仪器和测量量进行比较,便可获得测量结果的,该测量属于直接测量。如:米尺测长度、温度计测温度.p凡是通过与被测量有函数关系的其他量,才得到被测量量值的测量,称为间接测量。如:电功率.1.直接测量与间接测量是相对的。2.直接测量是测量的基础。2.等精度测量和不等精度测量p由同一观察者用同一仪器、同一方法、同一环境测量n次,所得测量值为x1、x2.xn,则把这样在同一种条件下的重复测量称为等精度测量。p在不同条件(观察者、仪器、方法、环境)下的多次测量称为不等精度测量。3.重复测量和单次测量p在等精度的条件下对待测量进行多次直接测量,每一次测量是测量
3、全过程的重新调节,称为重复测量。p只对测量量进行一次测量,称为单次测量。1. 测量结果的准确度要求不高,允许粗略地估计误差的大小。2. 测量误差远小于仪器误差。3. 受条件的限制,如在动态测量中,无法对待测量做重复测量。4.测量的精密度、准确度、精确度p精密度p准确度p精确度精密、不准确准确、不精密精确不精确5.仪器的准确度等级与仪器的公差p选择测量仪器应考虑:准确度等级、测量范围、实际测量量对精度的要求等。p仪器的精密度:仪器的最小读数。最小读数的数值越小,仪器的精密度越高,误差越小。p测量结果的精密度和准确度与测量仪器的精确度等级密切相关。p仪器的公差:仪l游标卡尺:出厂公差就是该游标卡尺
4、类精密度。l指针式电表:仪 = Am%l数字式仪表:仪 = K%V + ND二、测量结果分析的基本概念n1i1ixnx随机变量的算术平均数,等于“试验结果的各个可能值与其相应的频率f(x=xi)乘积之和”。由于频率f(x=xi)要试验后才能确定,因而算术平均数也必须到试验后才能求出,而且各次试验后,所得到算术平均数也不一定相同,具有随机性。iifxxn1i1. 多次等精度测量结果的估算(1) 算术平均值与数学期望零件重 x公斤99100101件数 m255025频率 f25/10050/10025/100公斤10010025101100501001002599xp 数学期望dxxxfxE)()
5、(iiipxE(x)1x是连续的在大量试验下,频率f(x=xi)稳定于概率p(x=xi),而随机变量x的算术平均值也一定稳定于“随机变量x的各个可能值与其相应概率p(x=xi)乘积的总和”,这个“总和”是一个常数,它是算术平均值的稳定值,称为随机变量x的数学期望。p 算术平均值与数学期望数学期望E(x)与算术平均值有紧密联系,都是反映随机变量x的“平均特征”这一统计特征,但它们又有质的差别, E(x)是一个客观存在的理论值,而算术平均值是一个试验值,具有随机性。其中,11iip概率概率密度函数111212nVnxxniiniixp测量列的标准误差:p测量列平均值的标准误差:nnnxxxniix
6、112(2)测量列及测量列平均值的标准误差u概率密度函数:21exp21)x(f(x)u正态分布曲线:xf(x)概率含量68.3%概率含量99.7%xxx3x3特点:单峰性对称性有界性抵偿性(3)正态分布1-2 实验测量不确定度的评定1、定义:测量值测量不确定度用测量的算术平均值来表示 pxU测量结果nxxxxn21由于测量误差的存在而对测量值不能肯定的程度,称为不确定度,它是与测量结果相联系的一个参数。一、不确定度的定义与物理意义2、分类A类评定B类评定3、物理意义:更科学地表示了测量结果的可靠性 pxU测量结果表示真值在量值U,Uxx之中,显然,量值范围越窄,则测量不确定度越小,用测量值表
7、示真值的可靠性就越高。111212nVnxxniiniixnnnxxxniix1122. 求测量列平均值的标准误差1.用贝塞尔公式求标准误差二、直接测量标准不确定度的A类评定当测量次数足够多时,测量值分布满足正态分布xx置信概率68.3%xf(x)为达到同样的置信概率,应把测量偏差范围扩大,乘上一个 因子,即:xxxvptxvptxvpt但实验测量中,次数有限所以测量值不满足正态分布,而是遵循 分布。三种概率下的不同自由度v的tvp值(v=n-1)0.990.950.68765432vtp0.990.950.68 191498vtpnttxvpxvpAU所以直接测量量不确定度A类评定为:三、直
8、接测量标准不确定度的B类评定CkpB仪U注意:对于不同的置信概率p,具有不同的A类不确定度。无法按统计规律作评定的B类不确定度为:置信概率p与置信因子kp的关系表p0.5000.6830.9000.9500.9550.9900.997kp0.67511.651.9622.583仪器名称米尺游标卡尺千分尺物理天平秒表误差分布正态分布均匀分布正态分布正态分布正态分布C33333误差分布与置信系数C的关系3U仪B1)正态分布或近似高斯分布P = 68.3%3U仪B2)均匀分布P = 68.3%3)三角分布6U仪BP = 68.3%四、 总不确定度的合成22UUUBAUxx测量结果:P = 68.3%
9、注意:A、B类不确定度的合成时,置信概率需一致。v测量不确定度用一位或二位数表示。如果作为间接测量的一个中间结果(中间过程)不确定度最好用二位;首位逢一、二用两位;对不保留数字一律“只进不舍”,如ux=0.32,取0.4。v测量值的计算遵循有效数字运算规则,对保留数字末位采用“4舍6入,5凑偶”规则。五、直接测量结果不确定度书写表示注意事项如:测量结果平均值为2.1445 cm,其标准不确定度计算为0.0124 cm,则测量结果为:2.1440.013 cmv不确定度单位应与测量值单位保持一致。v测量值末位与不确定度末位相对齐。相对不确定度:没有单位,用百分数表示,它更能反映测量的准确程度。所
10、取位数0-10%10%-100%取二位定义:表示不确定度Ux在整个测量值 中所占百分比,用符号“E”来表示:x%100UxExv不确定度的其它表示:首位逢1和2:取2位有效数字 首位其它数字:取1位有效数字 例:用量程025mm,最小分度值为0.01mm,最大允差为 0.004mm的螺旋测量微器测量钢丝的直径6次,数据如下:D(mm):3.953,3.953,3.950,3.954,3.952,3.953, 求直径的A,B类不确定度,并完整表示不确定度测量结果。解:(1) 求A类不确定度mmDDnDiinii9525. 3611611测量次数为6次,查表得t0.683=1.11,mmnnDDt
11、tniipxpA00063.0301050.911.11U612mmB0014.03004.03U仪mmUBA0016.00014.00007.0UU2222测量结果的不确定度表示:)683. 0()002. 0952. 3(0016. 09525. 3pmmUDDD相对不确定度:%05. 0%1009525. 30016. 0%100DUED螺旋测微器的误差为正态分布,C=3(2) 求B类不确定度(3) 不确定度的合成六、间接测量量不确定度的估算不确定度传递公式:表示间接测量不确定度与各直接测量不确定度之间的关系式nxnxxxNUxfUxfUxfUxfU321321nxnxxxNUxfUxf
12、UxfUxfUlnlnlnln|N|3213211.常用函数不确定度的算术合成p 绝对不确定度传递公式:p 相对不确定度传递公式:例如: N=A+B N=ABnxxxxfN,3212.常用函数不确定度的几何合成p 绝对不确定度传递公式:2222121nxnxxNUxfUxfUxfUp 相对不确定度传递公式:22221lnlnln|21nxnxxNUxfUxfUxfNU算术合成的不确定度传递公式简单但得到的是可能的最大偏差例如: N=A+B N=AB不确定度传递公式应按下列步骤进行:(1)对函数求全微分(乘除时或先对函数取自然对数,再求全微分);(2)合并同一变量的系数;(3)将微分号改为不确定
13、度符号,求各项的绝对值之和(算术合成),或求各项的平方和再开方(几何合成)。3.运算顺序的选择v函数为和与差关系-先计算绝对不确定度,后计算相对不确定度v函数为积与商关系-先计算相对不确定度,后计算绝对不确定度v函数为先和差后积商关系-先计算相对不确定度,后计算绝对不确定度v函数为先积商后和差关系-先计算绝对不确定度,后计算相对不确定度1-3 有效数字及其运算一、有效数字定义:测量数据中所有可靠数字加上一位可疑数字统称为有效数字。有效数字的最后一位是估读的,为可疑数字。虽然可疑数字不是准确的,是误差所在的位,但仍反映了被测量大小的信息,所以还是有意义的。估读位前的几位数字都为可靠数字。1. 实
14、验过程中记录应记几位数字?2. 实验后,处理实验数据时数据运算后要保留几位数字?1.有效数字的认定1)在测量数据中1、2、9九个数字,每个数字都为有效数字。2)“0”是特殊数字,其认定应注意以下几种情况:v数字间的“0”为有效数字v数字后的“0”为有效数字v数字前的“0”不是有效数字,表示数量级大小注意:在测量时,数据不能任意多写或少写,即便是“0”也一样。3)有效数字的位数计算,从第一位不是“0”的数字至最后一位。4)在十进制单位中,有效数字的位数与十进制单位的变化无关。5)有效数字的位数多少,在一定程度上反映测量结果的准确度。有效数字位数越多相对误差越小,准确度越大有效数字位数越少相对误差
15、越大,准确度越小2.科学记数法标准式v为计算的方便,对较大或较小的数值,常用10n的形式来书写(n为正整数),。(1)加减法则:加减运算所得结果的最后一位,保留到所有参加运算的数中末位数数量级最大的那一位为止。例:217-14.8=结果: 20271.32-0.8+6.3+271=结果:348二、有效数字的运算法则202.2347.82(2)乘除法则:积和商的位数与参与运算诸项中有效数字位数最少的那一项相同。31.522.1=66.192结果: 663 .1017030. 11965. 025987996.5=5193.53102 . 5结果:41002. 1结果:03.582537. 628
16、. 928. 9034336.582537. 628. 9可多加一位有效数字由,v特殊情况:(3)综合运算计算法则:从左到右,按先“乘、除”后“加、减”进行,加、减按加减法则,乘除按乘除法则。44103863.20103863.200002. 00632. 6863.200136. 50138. 50632. 6(4)平均值的有效数字:计算重复测量4次以上的数据平均值,当表示测量结果时,取与测量值一样的位数,如果作为其他计算的过程量时,可以多取一位有效数字。(5)无理数运算的有效数字:取无理数的位数比参与运算中有效数字位数最少的那一位多一位(其中,常数不参与有效数字的运算)。20566. 31
17、42. 33434434,66. 3,34333)(位取为常数,此时因为若RVRRV(6)乘方、开方的法则:乘方、开方运算中,最后结果的有效数字位数与自变量的有效数字位数相同。(7)函数运算的有效数字选取法则:通过改变函数值末位的一个单位,由函数值的变化来决定函数的有效数字位数。通常“小于5则舍”,“大于5则入”,“等于5则凑偶”即前一位为奇数则进(奇进),以成偶数;若前一位为偶数则舍(偶舍)。例:4 . 035. 0351. 24 . 045. 0二、数值的修约规则尾数的舍入法则注意:2.51取一位有效数字,因为5后有一位1,满足大于5法则,则进习题 P302.下列数值改用有效数字的标准式来
18、表示。(1)光速=(299792458100)米/秒解:(2.99792460.0000010)108 米/秒(3)比热C=(0.0017300.0005)卡/克度解:(1.70.5)10-3 卡/克度3.下列各数值正确的有效数字(1)8.4670.2解:8.50.2(3)0.0026540.0008解:0.00270.0008(4)6523.5870.3解:6523.60.35.假设下列各数值的最后一位都是估计(可疑)的,请以有效数字表示其正确答案。(1)1.7321.74=3.01368解:3.01(2)10.220.08320.41=0.34862464解:0.35(3)解:2103(5
19、)(17.34-17.13)14.28=2.9988解:3.04.20419.30034.6038.60421.8y331029 .301029 .30004. 00421. 89 .30034. 6038. 60421. 86.计算正式结果及其不确定度的表示式(算术合成和几何合成)。N=A+2B+C-5D, 设:A=(38.2060.001)cm, B=(13.24870.0001)cmC=(161.250.01)cm, D=(1.32420.0001)cm解:(1) 不确定度的算术合成:这里因为这里因为161.25161.25的末尾数数量的末尾数数量级最大,所以最终结果保留到级最大,所以最
20、终结果保留到百分位,后面小于五舍去。百分位,后面小于五舍去。对不确定度项结果只进不对不确定度项结果只进不舍,数位与测量值对齐。舍,数位与测量值对齐。cmUN02. 00117. 00005. 001. 00002. 0001. 00001. 0501. 00001. 02001. 0cmN33.2193324.2196210. 625.1614974.26206.383242. 1525.1612487.132206.38cmUNN02. 033.219(2) 不确定度的几何合成: cmUUUUUDCBAN02. 0100129. 11025101104101)0001. 05()01. 0(
21、)0001. 02()001. 0()5()()2()(4848622222222cmUNN02. 033.2198.两分量(10.200.04)厘米和(3.010.03)厘米,用算术合成和几何合成两种方法,相加对其不确定度该如何表示?相乘时其不确定度又该如何表示?解:令A=10.200.04cm,B=3.010.03cm,当两式相加时,令N=A+B,则N=10.20+3.01=13.21cm(1)算术合成法:UN=UA+UB=0.04+0.03=0.07cm, NUN=13.210.07cm(2)几何合成法:cmUUUAN05. 00025. 00009. 00016. 0)03. 0()0
22、4. 0(222B2NUN=13.210.05cm当两式相乘加时,令N=AB,则N=10.203.01=30.7cm2(1)算术合成法:UN=|BUA|+|AUB| =0.1204+0.306=0.5cm2, NUN=30.70.5cm2(2)几何合成法:011.000012.0)01.303.0()20.1004.0()()(N2222BUAUUBANUN=30.700.011=0.4cm2NUN=30.70.4cm210.写出下列函数的不确定度表示式,分别用不确定度的算术合成和几何合成两种方法表示(用最合适的方法从不确定度或相对不确定度中选择一种)(1)N=x+y-2z解:算术合成法: 几
23、何合成法:zyxzyxNUUUUzfUyfUxfU2222222)2()()()(zyxzyxNUUUUzfUyfUxfU(2)Q=k(A2+B2)/2, 其中k为常数解:算术合成法: 几何合成法:令)(222BABABAQBUAUkkBUkAUUBfUAfU22,BEAP22222222)()()2()2(22)2()2(BABAEPEPQBUAUkBUAUkUUkUkUkU230230)1(2,)1(2attVaVataVtVtt|)1(2|)1(2|)1(2|2323230tatttattaVtUaUatVUattVUataVUtfUafU算术合成:解:22322322322)()(|)
24、1(2|)1(2)1(2)()(0tatttattaVtUaUatVUattVUataVUtfUafU几何合成:解:测量列平均值: 平均值标准误差:测量次数为10次,在置信概率为68.3%时,t因子则A类不确定度值为:)(34. 3101101mmddii)(009. 0910)34. 3(1012mmdii)(01. 0683. 0mmtUA06. 1683. 0t11.用量程为125mm的游标卡尺测量一钢珠直径10次,已知仪器最小分度值为0.02mm,仪器的最大允差仪=0.02mm,测量数据如下,求测量列的平均值、平均值标准误差、测量列的A、B类及合成标准不确定度。次数次数12345678
25、910d(mm)3.323.343.36 3.303.343.383.303.323.343.36游标卡尺的误差为均匀分布,则B类不确定度值为:因此合成不确定度为: 结果不确定度表示: 相对不确定度为: (p=68.3%)(012. 0302. 03mmUB仪)(02. 022mmUUUBA)(02. 034. 3mmUdd%6 . 0%10034. 302. 0%100dUE1-4实验测量数据的处理一、列表法二、作图法三、逐差法四、测量数据的直线拟合五、计算机实验数据处理一、列表法将一组有关的实验数据和计算过程的中间数据依一定的形式和顺序列成表格。注意:1.根据具体物理问题,列出表格的主题名
26、称,设计条理清楚的栏目、行列的表格,以便记录原始数据。2.表格栏目的设计要注意数据间的联系及计算顺序,利于记录和检查。3.物理量名称(或符号)、单位组成一个项目,写在表格首栏,自定义符号应交代其代表的物理意义。二、作图法在坐标纸上用图形描述物理量之间关系的一种方法,是处理实验数据的一种重要方法,也是实验方法研究问题的一种重要手段。1.作用及优点:(1)直观形象地表示出物理量的变化规律,便于寻找实验规律和总结经验公式。(2)帮助发现实验中个别的测量错误,并通过所绘图线对系统误差进行分析。(3)若图形是依据许多测量数据描出的光滑曲线,该图线便有多次测量取平均值的作用。(4)应用内插法、外推法可以从
27、图形上得出没有直接测量或在一定条件下无法直接测量的某些数值。(5)通过图形可以方便地得到许多有用的参量,如最大值、最小值、直接斜率和截距等。2.作图的要求:(1)作图一定要用坐标纸。如直角坐标纸、单对数坐标纸、双对数坐标纸和、极坐标纸等。(2)画出坐标轴的方向,标明其所代表的物理量及单位。通常横轴为自变量,纵轴为因变量。(3)坐标纸的大小及坐标轴的比例要适当,使数据中可靠的数字在图中仍为可靠,数据中可疑的一位,在图中仍为估读的一位。(4)为避免图线编于图纸的一角,坐标轴的标值不一定从“0”开始。(5)数据点的标出:同一张坐标纸上几条曲线上的数据点应分别用不同的标记,以示区别。(6)描绘图线,可
28、放弃偏离太远的个别点,使实验点均匀地分布在所绘直线的两侧。(7)标明图名称。若用物理量的符号表示图名,应按y-x轴顺序书写。(8)注明作者及日期并将做好的图纸贴在实验报告上。3.图解:根据已作好的图线,可以用解析的方法从图上求出各种参数(1)直线图解(2)曲线改直三、逐差法1.逐差法是一种处理实验数据的重要方法l一次逐差法:把实验测得的数据进行逐项相减,以验证函数是否多项式;或将数据按前后顺序分成两半,后半部与前半部对应项相减后求其平均值。l二次逐差法:把一次逐差值再做逐差,然后才能计算出实验结果的算法。2.逐差法优点:(1)求得值实际上是多次测量结果的平均值,故其准确度较高。(2)克服了大改
29、变量多次测量与仪器设备条件限制的矛盾。四、测量数据的直线拟合v科学实验中,二元或多元变量之间的相互关系,可以分为确定性关系和相关关系。v相关关系是一种数理统计关系,变量间即存在密切关联,却又不能由一个或数个变量的数值精确地求出另一个变量的数值,即存在不确定性。拟合:运用有关误差理论的知识,求一条能最佳地描述原函数的曲线的过程。回归分析:以比较符合事物内部规律性的数学表达式来代表这一函数关系或拟合曲线的方法。1.最小二乘法是直线拟合的常用方法。2.最小二乘法可用于线性参数,也可用于非线性参数。3.变换法:把非线性的问题通过变量代换为线性情况来处理。4.经验公式(1)坐标纸上绘出实验曲线;(2)参
30、照已知的函数曲线,拟定实验曲线的函数;(3)变换坐标,将实验曲线改为直线;(4)最小二乘法求直线参数;(5)返回到原函数,即为经验公式;(6)和测量值比较修改经验公式。五、计算机实验数据处理1.用Excel电子表格软件作实验数据的最小二乘法直线拟合。2.用Origin软件作实验数据的最小二乘法直线拟合。(1)工作表(worksheet)窗口(2)Origin基本数据分析功能(3)Origin的绘图功能实验报告要求:实验报告要求:实验目的实验仪器实验内容实验原理数据表格数据及其数据处理结果与讨论注意事项实验名称系别 姓名 学号 组别预习报告实验报告实验报告实验报告 的基本要求的基本要求预习部分预习部分数据处理数据处理完成时间完成时间实验实验前前实验实验后后完成内容完成内容 实验题目实验题目一、实验目的一、实验目的二、实验仪器二、实验仪器三、实验原理三、实验原理四、实验内容与步骤四、实验内容与步骤五、数据表格五、数据表格 (各实验各实验老师签名老师签名)六、数据表格的重新整理六、数据表格
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024建筑项目铜门定制及安装工程合同
- 2024年香港地区离婚协议模板版
- 2024年版杭州婚房房产分割协议书
- 2024年版简易工程施工承包合同范本版B版
- 2025版劳动人事争议仲裁院劳动争议仲裁院争议案件调解与仲裁员监督合同2篇
- 2025版烟酒电商平台合作协议细则3篇
- 2023年中空玻璃设备项目融资计划书
- 课题申报书:代际传递视角下儿童期情感忽视对小学生心理健康的影响及其干预措施研究
- 2025年度股东股权变更协议参考范本3篇
- 课题申报书:大学生学习过程数字化建模与评估研究
- 劳动合同范本(2025年)
- 辽宁2025年高中学业水平合格性考试物理试卷试题(含答案详解)
- 2024年人教版三年级上数学教学计划和进度安排
- 《电能计量知识介绍》课件
- 2025届甘肃省武威市重点中学高三六校第一次联考英语试卷含解析
- 2023-2024学年山东省潍坊市高新区六年级(上)期末数学试卷(含答案)
- 东方明珠课件
- 2024年教师师德师风工作计划(2篇)
- 物流行业服务质量保障制度
- 养老院物资采购流程及制度
- 工业项目投资估算及财务评价附表(有计算公式)
评论
0/150
提交评论