下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、182 勾股定理的逆定理(一)教学目标1体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的证明方法。3理解原命题、逆命题、逆定理的概念及关系。4经历直角三角形判别条件的探究过程,体会命题、定理的互逆性,渗透合情推理的数学意识。5通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内联系,感受定理与逆定理之间的和谐及辩证统一的关系。重点、难点1重点:理解并掌握勾股定理的逆定理,并会应用。2难点:勾股定理的逆定理的证明。教学方法体验探究法教学过程一.复习巩固:勾股定理:直角三角形两条直角边的平方和等于斜边的平方。创设情境,引入新课古埃及人用13个等距的结,把一根绳子
2、分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。按照这种做法真能得到一个直角三角形吗? 猜一猜下面的三组数分别是一个三角形的三边长a,b,c:5,12,13; 7,24,25; 8,15,17。(1)这三组数都满足a2+b2=c2吗?(2)它们都是直角三角形吗?讨论结果:若三角形的三边长分别为a、b、c满足a2+b2=c2 ,则这个三角形是直角三角形。二、合作探究,证实发现问题1:下面命题的题设、结论分别是什么?(1) 若三角形的两条直角边长分别为a、b,斜边为c,则a2+b2=c2 。(2) 若三角形的三边长分别为a、b、c满足a2+b2
3、=c2 ,则这个三角形是直角三角形。问题2:请同学们举出一些互逆命题,并思考:是否原命题正确,它的逆命题也正确呢?请学生互相交流。问题3:由以上发现原命题正确,其逆命题不一定正确,那我们发现的勾股定理的逆命题一定正确吗?还要我们做什么呢?探究(P74探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。分析:注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。先做直角
4、,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。证明略。三.介绍互逆命题: 两个命题中, 如果第一个命题的题设是第二个命题的结论, 而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题. 如果把其中一个叫做原命题, 那么另一个叫做它的逆命题. 互逆定理: 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.练
5、习:说出下列命题的逆命题这些命题的逆命题成立吗?(1)两条直线平行,内错角相等(2)如果两个实数相等,那么它们的平方相等(3)如果两个实数相等,那么它们的绝对值相等(4)全等三角形的对应角相等感悟 (1)任何一个命题都有逆命题; (2)原命题是正确,逆命题不一定正确,原命题不正确,逆命题可能正确; (3)原命题与逆命题的关系就是,命题中题设与结论相互转换的关系 四、应用新知,解决问题问题1:勾股定理逆定理有什么用呢,试举例说明。问题2:判断三边为5,6,7的三角形是不是直角三角形,是否把任意两边的平方和都算出来,再与第三边比较?还是有其他方法?例1 判断由线段a,b,c组成的三角形是不是直角三
6、角形:(1)a=15, b=8, c=17;(2)a=13, b=14, c=15。点拨:直角三角形的三条边长若为三个正整数,则称这些为勾股数。问题3:同学们,你还知道哪些勾股数?小试身手:1.课本75页练习第1题2ABC中A、B、C的对边分别是a、b、c,下列命题中的假命题是( )A如果CB=A,则ABC是直角三角形。B如果c2= b2a2,则ABC是直角三角形,且C=90°。C如果(ca)(ca)=b2,则ABC是直角三角形。D如果A:B:C=5:2:3,则ABC是直角三角形。3下列四条线段不能组成直角三角形的是( )Aa=8,b=15,c=17Ba=9,b=12,c=15Ca=
7、,b=,c=Da:b:c=2:3:44我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)也是一组勾股数吗?一般的,如果a,b,c是一组勾股数,那么,ak,bk,ck(k是正整数)也是一组勾股数吗?5如果ABC的三边分别为a、b、c且满足 a2b2c2506a8b10c, 判定ABC的形状. 五、反思小结,提炼观点1.利用勾股定理逆定理证明三角形是直角三角形的步骤:一是先判断哪条边最大;二是分别用代数方法计算出a2+b2和c2 的值;三是判断a2+b2和c2 是否相等。2.证明三角形有哪些判定方法?五、分层作业,各有所获必做题:习题18.2第1、2题选做题:习题18.2第6题1填空题。任何一个命题都有 ,但任何一个定理未必都有 。“两直线平行,内错角相等。”的逆定理是 。在ABC中,若a2=b2c2,则ABC是 三角形, 是直角;若a2b2c2,则B是 。若在ABC中,a=m2n2,b=2mn,c= m2n2,则ABC是 三角形。2若三角形的三边是 1、2; ; 32,42,52 9,40,41; (mn)21,2(mn),(mn)21;则构成的是直角三角形的有( )A2个 B个个个3已知:在ABC中,A、B、C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械行业促销计划总结
- 健康行业采购工作总结
- 重要工程安保工作的系统总结计划
- 科技产品设计师的智能体验与科技感
- 水务文化建设的探索计划
- 中小学了解学习历史英雄人物故事主题班会:红色人物1
- 2023年云南省临沧市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年浙江省舟山市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年山西省忻州市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年浙江省丽水市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 长期照护服务流程
- 精心打造东北大学近四年C语言理论考试试题及答案
- 医院规划发展部社会工作科职责
- 《Power Bi应用》课程标准
- 《疯狂动物城》全本台词中英文对照
- 幼儿园的品格与道德教育主题班会课件
- 2024抗菌药物分级管理及临床合理应用考核试题及答案
- 储能系统的应急预案措施
- 论海澜之家存货管理的问题、成因及其对策
- 医院长期医嘱单(模板)
- 班主任育人故事(通用17篇)
评论
0/150
提交评论