弹性力学结课论文_第1页
弹性力学结课论文_第2页
弹性力学结课论文_第3页
弹性力学结课论文_第4页
弹性力学结课论文_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、弹性力学结课论文班级:道桥1201姓名:刘元功学号120580115弹性力学在土木工程中的应用摘要:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产的应力、弹性力学,应变和位移,从而解决结构或设计中所提生出的强度和刚度问题。在土木工程方面,建筑物能够通过有效的弹性可以抵消部分晃动,从而减少在地震中房屋倒塌的现象;对于水坝结构来说,弹性变化同样具有曲线性,适合不断变化的水坝内部的压力,还有大型跨顶建筑、斜拉桥等等。弹性力学在土木工程中还有一些重要应用实例,如:地基应力与沉降计算原理、混凝土板的计算方法、混凝土材料受拉劈裂试验的力学原理、混凝土结构温度裂缝分析、工程应变分析

2、、结构中的剪力滞问题等。关键词:弹性力学、力学、弹性变形、土木工程正文:弹性力学是人们在长期生产实践与科学试验的丰富成果上发展起来的。它的发展与社会生产发展有着特别密切的关系,它来源于生产实践反过来又为生产实践服务,弹性力学作为固体力学的一个独立的分支已经与一百多年的历史。弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构

3、件在内的各种形状的弹性体。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性力学弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。 连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就

4、有裂纹,则只考虑裂纹不扩展的情况。对于物体弹性变形,变形的机理,应从材料内部原子间里的作用来分析。实际上,固体材料之所以能好吃其内部结构的稳定性是由于组成该固体材料(如金属)的原子间存在着相互平衡的力,吸力使原子间密切联系在一起,而短程排斥力则使各原子间保持一定的距离在正常情况下,这两种力保持平衡,原子间的相对位置处于规则排列的稳定状态。受外力作用时,这种平衡被打破,为了恢复平衡,原子便需产生移动和调整,使得吸力、斥力和外力之间取得平衡。因此,如果知道了原子之间的力相互之间的定律,原则上就能算出晶体在一定弹性力作用下的反应。实际上,固体结构的内部是多样的、复杂的。例如:夹杂、微孔、晶界等,都是

5、影响变形发展的因素。目前的一些学说仍不能尚不能解释全部固体材料的微观机理。主要是由于所有的工程材料都不可避免的有缺陷存在。对于工程问题来说不必具体分析每一个材料对于材料性态的影响,而只需宏观的研究其统计特性,即可解决工程力学中的力学分析问题。仅宏观的弹性体在受外部作用时应力场和位移场的分布,主要是梁、板、壳这一类结构及其它形式的结构物和构筑物的弹性力学问题。弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、平面问题、变截面轴扭转,回转体轴对称变形等方面。土木工程中的结构物设计与力学息息相关、紧密联系。我们已学过材料力学,那么弹性力学在土木工程中到底有哪些应用呢?土木工程包括工民建、路桥、岩土

6、、地下结构等多个专业方向,显然不同专业方向对弹性力学要求的程度是不相同的,其中应说以岩土、地下等专业方向对弹性力学要求较高,而其它专业方向尤其是建工方向则相对低一些。弹性力学,在土木工程方面,建筑物能够通过有效的弹性可以抵消部分晃动,从而减少在地震中房屋倒塌的现象;对于水坝结构来说,弹性变化同样具有曲线性,适合不断变化的水坝内部的压力,还有大型跨顶建筑、斜拉桥等等。弹性力学在土木工程中还有一些重要应用实例,如:地基应力与沉降计算原理、混凝土板的计算方法、混凝土材料受拉劈裂试验的力学原理、混凝土结构温度裂缝分析、工程应变分析、结构中的剪力滞问题等。材料力学及结构力学主要研究的是“杆状”构件(或结

7、构)的力学问题,所谓的“杆状”构件是指构件的纵向尺寸远大于其横向尺寸,如常见的梁构件,其纵向长度远大于梁高和宽,对于这样的构件或结构可以引入某些计算假定,如平截面假定,由这些假定所得到的分析结果与实际情况吻合良好,这一类的“杆状”构件在土木工程中得到了大量的应用,因此在一些承重的“过梁”上经常用到“弹性力学”,这些过梁一般都受到自上而下的“力”如果把这样的“过梁”作成水平,那么,长时间受到向下的力,“过梁”就会向下弯,久而久之,便形成变形。依据弹性力学的原理,把过梁作成向上弯一定幅度的形状,当受到向下的力时过梁就会把 这种重力按过梁弯曲的形状传到垂直的“承重墙”那里使建筑物合理承受外力。另外还

8、有连续梁、框架、排架及桁架结构等,采用材料力学与结构力学可以研究这类结构的强度、刚度以及稳定性问题,为结构设计提供计算依据。然而工程上还存在着许多其他的“非杆状”结构,例如简支深梁由于梁高与跨度比较接近,材料力学中的平截面假定在这里不成立,因此材料力学关于梁的解答是不可以采用的,必须采用弹性力学的方法求解深梁的应力分布,对于混凝土深梁而言,只有知道了深梁内部的拉应力分布状况,才可以进行相应的配筋设计;还有砖混结构中常见的墙梁,它由混凝土与砖砌体两种材料组成,对于混凝土梁的设计分析,应考虑砌体的影响,应将砌体与梁作整体弹性力学分析,由于砌体具有拱效应,混凝土梁实际上起到一个拉杆的作用 (偏心受拉

9、构件),这样混凝土梁的截面就可以设计得较小,如果按材料力学或结构力学方法,单独对混凝土梁进行力学分析,则得到的混凝土梁截面会非常的粗大,浪费材料,而且达不到预期的结构效果;对高层建筑,由于建筑物上面为小开间住宅,可设计成全剪力墙结构,下面为大开间的商场,需要设计成框架结构,于是在两种结构之间会出现一个所谓的转换层,常见的转换层结构采用的是框支梁,这个梁的高度至少有一层楼高,具有深梁的特性,框支梁的受力很复杂,一般要作精细的弹性力学(有限元)分析,才能作出合理的配筋设计; 在岩土工程方面,岩石、土很多情况下还是按弹性体考虑,提供弹性模量等参数。为适应复杂工程建设的需要,现在也经常把土或破碎岩石按

10、弹塑、塑性体看待,一定程度可以反映其强度、变形随时间变化的特性,流变、蠕变等效应。弹性力学中之外力包括:体力和面力,弹性力学类中之力法以应力为基本未知量应力求解是弹性力学的最基本方法,但是其应用有限,因为要建立力法求解的“应力函数”(如Airy函数),需要常体力的设定或其他严格的假设条件弹性力学的力法与结构力学虽都是以“力”作为首先求解的基本未知量,但其思想是不同的,由于弹性力学问题无计算假设(如杆件假设和平截面假设),不存在所谓的“静定基”,任何弹性体内部都是超静定的,必须将平衡条件、几何条件和物理条件联立求解二者的“相同”之处只在于都是以“力”为首先求解的未知量而已下面介绍一个弹性力学在土

11、木工程上的应用实例。在土木工程中,我们会遇到许多有关低级沉降的问题,解决这一问题可以用结构力学上的方法,可以考虑材料力学上的方法,但上面两种方法都存在着一定的麻烦,过程复杂。所以,当问题为均匀地基的沉降估算或计算瞬时沉降时,弹性力学中的方法将更为简单实用。计算地基最终沉降量的弹性力学方法地基最终沉降量的弹性力学计算方法是以Boussinesq课题的位移解为依据的。在弹性半空间表面作用着一个竖向集中力P时,见图6-5,表面位移w(x, y, o)就是地基表面的沉降量s: (6-8)式中 地基土的泊松比;E地基土的弹性模量(或变形模量E0); 为地基表面任意点到集中力P作用点的距离,。对于局部荷载

12、下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6所示,设荷载面积A内N(,)点处的分布荷载为p0(,),则该点微面积上的分布荷载可为集中力P= p0(,)dd代替。于是,地面上与N点距离r =的M(x, y)点的沉降s(x, y),可由式(6-8)积分求得: (6-9) 图6-5 集中力作用下地基表面的沉降曲线图6-6 局部荷载下的地面沉降(a)任意荷载面;(b)矩形荷载面从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若沉降已知又可以反算出应力分布。对均布矩形荷载p0(,)= p0=常数,其角点C的沉降按上式积分的结果为: (6-10)式中 角点沉降影响系数,由下式

13、确定: (6-11)式中 m=l/b。利用式(6-10),以角点法易求得均布矩形荷载下地基表面任意点的沉降。例如矩形中心点的沉降是图6-6(b)中的虚线划分为四个相同小矩形的角点沉降之和,即 (6-12)式中 中心沉降影响系数。图6-7 局部荷载作用下的地面沉降(a)绝对柔性基础;(b)绝对刚性基础以上角点法的计算结果和实践经验都表明,柔性荷载下地面的沉降不仅产生于荷载面范围之内,而且还影响到荷载面之外,沉降后的地面呈碟形,见图6-7。但一般基础都具有一定的抗弯刚度,因而沉降依基础刚度的大小而趋于均匀。中心荷载作用下的基础沉降可以近似地按绝对柔性基础基底平均沉降计算,即 (6-13)式中 A基

14、底面积,s(x, y)点(x, y)处的基础沉降。对于均布的矩形荷载,上式积分的结果为: (6-14)式中 平均沉降影响系数。可将式(6-10)、式(6-12)、式(6-14)统一成为地基沉降的弹性力学公式的一般形式: (6-15)式中 b矩形基础(荷载)的宽度或圆形基础(荷载)的直径,无量纲沉降影响系数,见表6-1。 基础沉降影响系数值 表6-1基础形状基础刚度圆形方形矩 形(l/b)1.01.52.03.04.05.06.07.08.09.010.1100.0柔性基础0.640.560.680.770.890.981.051.111.161.201.241.272.001.001.121.

15、361.531.781.962.102.222.322.402.482.544.010.850.951.151.301.521.201.831.962.042.122.192.253.70刚性基础0.790.881.081.221.441.611.722.123.40刚性基础承受偏心荷载时,沉降后基底为一倾斜面,基底形心处的沉降(即平均沉降)可按式(6-15)取计算,基底倾斜的弹性力学公式如下:圆形基础: (6-16a)矩形基础: (6-16b)式中 基础倾斜角;P基底竖向偏心荷载合力;e偏心距;b荷载偏心方向的矩形基底边长或圆形基底直径;K计算矩形刚性基础倾斜的无量纲系数,按l/b取值,如图

16、6-8,其中l为矩形基底另一边长。图6-8 计算矩形刚性基础倾斜的系数K通常按式(6-15)计算的基础最终沉降量是偏大的。这是由于弹性力学公式是按匀质线性变形半空间的假设得到的,而实际上地基常常是非均质的成层土,即使是均质的土层,其变形模量E0一般随深度而增大。因此,利用弹性力学公式计算沉降的问题,在于所用的E0值能否反映地基变形的真实情况。地基土层的E0值,如能从已有建筑物的沉降观测资料,以弹性力学公式反算求得,则这种数据是很有价值的。图6-9 地基沉降计算系数和此外,弹性力学公式可用来计算地基的瞬时沉降,此时认为地基土不产生体积变形,例如风或其它短暂荷载作用下,构筑物基础的倾斜可按式(6-

17、16)计算,注意式中的E0应取为地基弹性模量,并取泊松比=0.5。在大多数实际问题中,土层的厚度是有限的,下卧坚硬土层。Christian和Carrier(1978)提出了计算有限厚土层上柔性基础的平均沉降计算公式: (6-17)式中,取决于基础埋深和宽度之比D/b,取决于地基土厚度H和基础形状。取泊松比=0.5时和如图6-9所示。对于成层土地基,可利用叠加原理来计算地基平均沉降。式(6-17)主要用于估计饱和粘土地基的瞬时沉降,由于瞬时沉降是在不排水状态下发生的,因此,适宜的泊松比应取0.5,适应的变形模量E0应取不排水模量Eu。例题 某矩形基础底面尺寸为4m×2m,其基底压力p0=150kPa,埋深1m,地基土第一层为5m厚的粘土,不排水变形模量Eu=40MPa,第二层为8m厚的粘土,Eu=75MPa,其下为坚硬土层。试估算基础的瞬时沉降。解:D/b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论