下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2413 弧、弦、圆心角教学任务分析教学目标知识技能通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理;数学思考(1)通过观察、比较、操作、推理、归纳等活动,发展空间观点、推理水平以及概括问题的水平;(2)利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理解决问题学生在探索圆周角与圆心角的关系的过程中,学会使用分类讨论的数学思想,转化的数学思想解决问题情感态度培养学生积极探索数学问题的态度及方法重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明教学流程安排活动流程图活动内容和目的活动1
2、做一做议一议活动2 巩固练习活动3 议一议活动4 小结,布置作业创设问题情境,激发学生兴趣,引出本节内容同时探究圆心角、弧、弦之间关系定理巩固对知识的理解拓展创新、应用提升,培养学生的应用意识和创新水平巩固新知,归纳总结教学过程设计一、 创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的O和O,沿圆周分别将两圆剪下;(2)在O和O上分别作相等的圆心角AOB和AOB,如图1所示,圆心固定注意:在画AOB与AOB时,要使OB相对于OA的方向与OB相对于OA的方向一致,否则当OA与OA重合时,OB与OB不能重合图1 (3)将其中的一个圆旋转一
3、个角度使得OA与OA重合通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作 由已知条件可知AOBAOB;由两圆的半径相等,能够得到OABOBAOAB=OBA;由AOBAOB,可得到ABAB;由旋转法可知在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与OA重合时,因为AOBAOB这样便得到半径OB与OB重合因为点A和点A重合,点B和点B重合,所以和重合,弦AB与弦AB重合,即,AB=AB进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中
4、,相等的圆心角所对的弧相等,所对的弦也相等2根据对上述定理的理解,你能证明下列命题是准确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等师生活动设计:本问题由学生在思考的基础上讨论解决,能够证明上述命题是真命题二、主体活动,巩固新知,进一步理解三量关系定理图2活动2:1如图2,在O中,ACB60°,求证AOB=AOC=BOC学生活动设计:学生独立思考,根据对三量定理的理解加以分析由,得到,ABC是等腰三角形,由ACB60°,得到ABC是等边三角形,AB=A
5、C=BC,所以得到AOB=AOC=BOC教师活动设计:这个问题是对三量关系定理的简单应用,所以理应让学生独立解决,在必要时教师能够实行适当的启发和提醒,最后学生交流自己的做法证明 AB=AC,ABC是等腰三角形又 ACB60°, ABC是等边三角形,AB=BC=CA图3 AOB=AOC=BOC2如图3,AB是O的直径,BC、CD、DA是O的弦,且BCCDDA,求BOD的度数学生活动设计:学生分析,由BCCDDA能够得到这三条弦所对的圆心角相等,所以考虑连接OC,得到AOD=DOC=BOC,而AB是直径,于是得到BOD×180°120°教师活动设计:此问题
6、的解决方式和活动3类似,不过要注意学生对辅助线OC的理解,添加辅助线OC的原因三、拓展创新、应用提升,培养学生的应用意识和创新水平活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?师生活动设计:图4小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如可以请同学们画一个只能是圆心角相等的这个条件的图如图4所示,虽然AOB=AOB,但ABAB,弧AB弧AB教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度坡屋面小青瓦施工质量监督与整改服务合同
- 二零二五年度新加坡留学就业辅导合同4篇
- 2025专业级防雷系统设计与施工监管合同3篇
- 商场自动扶梯安装与维护服务合同(2025年度)
- 二零二五版罗丝与杨洋的离婚协议及财产分割及子女抚养协议4篇
- 2025年度家具退货及维修保养服务协议范本
- 2025版GB∕T30057(环保)固体废物处理与资源化利用合同3篇
- 二零二五年度历史文化遗址草坪保护与旅游合同3篇
- 二零二五年度医疗信息化系统建设与维护合同2篇
- 2025版新型绿色建筑劳务分包合同范本3篇
- 副总经理招聘面试题与参考回答(某大型国企)2024年
- PDCA循环提高护士培训率
- 2024-2030年中国智慧水务行业应用需求分析发展规划研究报告
- 《狮子王》电影赏析
- 河北省保定市定州市2025届高二数学第一学期期末监测试题含解析
- 中医护理人文
- 2024-2030年中国路亚用品市场销售模式与竞争前景分析报告
- 货物运输安全培训课件
- 前端年终述职报告
- 2024小说推文行业白皮书
- 市人民医院关于开展“改善就医感受提升患者体验主题活动”2023-2025年实施方案及资料汇编
评论
0/150
提交评论