版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考数学精品复习资料 2019.5突破点10空间中的平行与垂直关系提炼1异面直线的性质(1)异面直线不具有传递性注意不能把异面直线误解为分别在两个不同平面内的两条直线或平面内的一条直线与平面外的一条直线(2)异面直线所成角的范围是,所以空间中两条直线垂直可能为异面垂直或相交垂直(3)求异面直线所成角的一般步骤为:找出(或作出)适合题设的角用平移法;求转化为在三角形中求解;结论由所求得的角或其补角即为所求提炼2平面与平面平行的常用性质(1)夹在两个平行平面之间的平行线段长度相等(2)经过平面外一点有且只有一个平面与已知平面平行(3)如果两个平面分别平行于第三个平面,那么这两个平面互相平行(4)两
2、个平面平行,则其中一个平面内的任意一条直线平行于另一个平面提炼3证明线面位置关系的方法(1)证明线线平行的方法:三角形的中位线等平面几何中的性质;线面平行的性质定理;面面平行的性质定理;线面垂直的性质定理(2)证明线面平行的方法:寻找线线平行,利用线面平行的判定定理;寻找面面平行,利用面面平行的性质(3)证明线面垂直的方法:线面垂直的定义,需要说明直线与平面内的所有直线都垂直;线面垂直的判定定理;面面垂直的性质定理(4)证明面面垂直的方法:定义法,即证明两个平面所成的二面角为直二面角;面面垂直的判定定理,即证明一个平面经过另一个平面的一条垂线回访1异面直线的性质1(20xx·全国乙卷
3、)平面过正方体abcda1b1c1d1的顶点a,平面cb1d1,平面abcdm,平面abb1a1n,则m,n所成角的正弦值为()a.b.c. d.a设平面cb1d1平面abcdm1.平面平面cb1d1,m1m.又平面abcd平面a1b1c1d1,且平面cb1d1平面a1b1c1d1b1d1,b1d1m1.b1d1m.平面abb1a1平面dcc1d1,且平面cb1d1平面dcc1d1cd1,同理可证cd1n.因此直线m与n所成的角即直线b1d1与cd1所成的角在正方体abcda1b1c1d1中,cb1d1是正三角形,故直线b1d1与cd1所成角为60°,其正弦值
4、为.2(20xx·广东高考)若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()al与l1,l2都不相交bl与l1,l2都相交c.l至多与l1,l2中的一条相交dl至少与l1,l2中的一条相交d由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交回访2面面平行的性质与线面位置关系的判断3(20xx·全国卷)已知m,n为异面直线,m平面,n平面.直线l满足lm,ln,l,l,则()a且lb且lc.与相交,且交线垂直于ld与相交,且交线平行于ld根据所给的已知条件作图,如图所示由图可知与相交,且交线平行
5、于l,故选d.4(20xx·全国甲卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等其中正确的命题有_(填写所有正确命题的编号)对于,可以平行,也可以相交但不垂直,故错误对于,由线面平行的性质定理知存在直线l,nl,又m,所以ml,所以mn,故正确对于,因为,所以,没有公共点又m,所以m,没有公共点,由线面平行的定义可知m,故正确对于,因为mn,所以m与所成的角和n与所成的角相等因为,所以n与所成的角和n与所成的角相等,所以m与所成的角和n与所成的角相等,故正确热点题型1空间
6、位置关系的判断与证明题型分析:空间中平行与垂直关系的判断与证明是高考常规的命题形式,此类题目综合体现了相关判定定理和性质定理的考查,同时也考查了学生的空间想象能力及转化与化归的思想(1)(20xx·兰州三模),是两平面,ab,cd是两条线段,已知ef,ab于点b,cd于点d,若增加一个条件,就能得出bdef.现有下列条件:ac;ac与,所成的角相等;ac与cd在内的射影在同一条直线上;acef.其中能成为增加条件的序号是_【导学号:85952040】若ac,且ef,则acef,又ab,且ef,则abef,ab和ac是平面acdb上的两条相交直线,则ef平面acdb,则efbd,可以成
7、为增加的条件;ac与,所成的角相等,ac和ef不一定垂直,可以相交、平行,所以ef与平面acdb不一定垂直,所以推不出ef与bd垂直,不能成为增加的条件;由cd,ef,得efcd,所以ef与cd在内的射影垂直,又ac与cd在内的射影在同一直线上,所以efac,cd和ac是平面acdb上的两条相交直线,则ef平面acdb,则efbd,可以成为增加的条件;若acef,则ac,则bdac,所以bdef,不能成为增加的条件,故能成为增加条件的序号是.(2)(20xx·全国乙卷)如图111,已知正三棱锥pabc的侧面是直角三角形,pa6,顶点p在平面abc内的正投影为点
8、d,d在平面pab内的正投影为点e,连接pe并延长交ab于点g.图111证明:g是ab的中点;在图中作出点e在平面pac内的正投影f(说明作法及理由),并求四面体pdef的体积解题指导(2)正投影d,eabpd,abdeab平面pedabpgpapbpbpc过点e作efpb交pa于点f证明ef平面pac点d在cg上pepg,depcde2,pe2efpf2求四面体的体积解证明:因为p在平面abc内的正投影为d,所以abpd.因为d在平面pab内的正投影为e,所以abde.1分因为pdded,所以ab平面ped,故abpg.2分又由已知可得,papb,所以g是ab的中点.3分在平面p
9、ab内,过点e作pb的平行线交pa于点f,f即为e在平面pac内的正投影.4分理由如下:由已知可得pbpa,pbpc,又efpb,所以efpa,efpc.又papcp,因此ef平面pac,即点f为e在平面pac内的正投影连接cg,因为p在平面abc内的正投影为d,所以d是正三角形abc的中心由知,g是ab的中点,所以d在cg上,故cdcg.8分由题设可得pc平面pab,de平面pab,所以depc,因此pepg,depc.10分由已知,正三棱锥的侧面是直角三角形且pa6,可得de2,pe2.在等腰直角三角形efp中,可得efpf2,11分所以四面体pdef的体积v××2
10、215;2×2.12分在解答空间中线线、线面和面面的位置关系问题时,我们可以从线、面的概念、定理出发,学会找特例、反例和构建几何模型判断两直线是异面直线是难点,我们可以依据定义来判定,也可以依据定理(过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线)判定而反证法是证明两直线异面的有效方法提醒:判断直线和平面的位置关系中往往易忽视直线在平面内,而面面位置关系中易忽视两个平面平行此类问题可以结合长方体中的线面关系找出假命题中的反例变式训练1(1)(20xx·石家庄二模)设m,n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m
11、;若n,mn,则m,m;若,则.其中真命题的个数为()a0b.1c.2d.3b若m,n,则m,n可能平行或异面,错误;若,则,又m,则m,正确;若n,mn,则m或m或m或m,错误;若,则,可能平行或相交,错误,则真命题个数为1,故选b.(2)(20xx·全国丙卷)如图112,四棱锥pabcd中,pa底面abcd,adbc,abadac3,pabc4,m为线段ad上一点,am2md,n为pc的中点图112证明mn平面pab;求四面体nbcm的体积解证明:由已知得amad2.如图,取bp的中点t,连接at,tn,由n为pc中点知tnbc,t
12、nbc2.又adbc,故tn綊am,2分所以四边形amnt为平行四边形,于是mnat.因为at平面pab,mn平面pab,所以mn平面pab.4分因为pa平面abcd,n为pc的中点,所以n到平面abcd的距离为pa.如图,取bc的中点e,连接ae.由abac3得aebc,ae.6分由ambc得m到bc的距离为,故sbcm×4×2.8分所以四面体nbcm的体积vnbcm×sbcm×.12分热点题型2平面图形的翻折问题题型分析:(1)解决翻折问题的关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况(2)找出其中变化的量和没有变
13、化的量,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化(20xx·全国甲卷)如图113,菱形abcd的对角线ac与bd交于点o,点e,f分别在ad,cd上,aecf,ef交bd于点h.将def沿ef折到def的位置图113(1)证明:achd;(2)若ab5,ac6,ae,od2,求五棱锥dabcfe的体积解(1)证明:由已知得acbd,adcd.1分又由aecf得,故acef.2分由此得efhd,故efhd,所以achd.3分(2)由efac得.4分由ab5,ac6得dobo4.所以oh1,dhdh3.5分于是od2
14、oh2(2)2129dh2,故odoh.6分由(1)知achd,又acbd,bdhdh,所以ac平面bhd,于是acod.8分又由odoh,acoho,所以od平面abc.又由得ef.10分五边形abcfe的面积s×6×8××3.11分所以五棱锥dabcfe的体积v××2.12分翻折问题的注意事项1画好两图:翻折之前的平面图形与翻折之后形成的几何体的直观图2把握关系:即比较翻折前后的图形,准确把握平面图形翻折前后的线线关系,哪些平行与垂直的关系不变,哪些平行与垂直的关系发生变化,这是准确把握几何体结构特征,进行空间线面关系
15、逻辑推理的基础3准确定量:即根据平面图形翻折的要求,把平面图形中的相关数量转化为空间几何体的数字特征,这是准确进行计算的基础变式训练2(20xx·海淀二模)已知长方形abcd中,ad,ab2,e为ab的中点将ade沿de折起到pde,得到四棱锥pbcde,如图114所示图114(1)若点m为pc的中点,求证:bm平面pde;(2)当平面pde平面bcde时,求四棱锥pbcde的体积;(3)求证:depc.解(1)证明:取dp中点f,连接ef,fm.因为在pdc中,点f,m分别是所在边的中点,所以fm綊dc.1分又eb綊dc,所以fm綊eb,2分所以四边形febm是平行四边形,所以bmef.3分又ef平面pde,bm平面pde.所以bm平面pde.4分(2)因为平面pde平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东科贸职业学院《工作坊交流》2023-2024学年第一学期期末试卷
- 广东警官学院《急诊与急救》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《计算机网络安全B》2023-2024学年第一学期期末试卷
- 广东技术师范大学《藏汉古代文化对比研究专业选修》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《短距离无线通信技术》2023-2024学年第一学期期末试卷
- 焖渣罐事故培训课件
- 《海航筹资之路与资》课件
- 广安职业技术学院《数字逻辑设计及应用》2023-2024学年第一学期期末试卷
- 保健老师培训课件
- 赣西科技职业学院《英语中级听力》2023-2024学年第一学期期末试卷
- 液压与气压传动中职PPT完整全套教学课件
- 国开大学2023年01月11067《知识产权法》期末考试答案
- 全部编版四年级语文下生字读音、音序、偏旁及组词
- 药物的不良反应
- 电气控制及PLC课程设计报告
- 直接打印800字作文纸
- 石油产品密度基本知识认知
- 《公安机关人民警察内务条令》
- GB/T 26254-2023家用和类似用途保健按摩垫
- 第三章热力学第二定律物理化学
- 煤矿塌陷治理土地复垦主要问题和政策措施
评论
0/150
提交评论