流体力学第12345章部分习题解答_第1页
流体力学第12345章部分习题解答_第2页
流体力学第12345章部分习题解答_第3页
流体力学第12345章部分习题解答_第4页
流体力学第12345章部分习题解答_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、fluid mechanics and machinery流体力学与流体机械流体力学与流体机械1作业: 1-3-2,1-3-4,1-3-7, 1-4-2第一章:第一章:fluid mechanics and machinery流体力学与流体机械流体力学与流体机械2u流体的粘滞性是流体在运动状态下抵抗剪切变形的能力;u牛顿流体服从牛顿内摩擦定律,即 ;u流体的速度梯度即角变形速度(剪切变形速度);u液体的粘滞系数随温度升高而减小,气体的粘滞系数随温度升高而增大;u理想流体是不考虑粘滞性作用的流体理想流体是不考虑粘滞性作用的流体。dudy流体的粘性总结fluid mechanics and mac

2、hinery流体力学与流体机械流体力学与流体机械3 1. 什么是连续介质假说?为什么流体质点要宏观上充分 小,微观上充分大?连续介质假说在什么条件下是合 理的? 2. 什么是体积弹性模量?怎样求气 体和液体的体积弹性 模量? 3. 牛顿内摩擦定律中 的物理意义是什么? 和 的单 位各是什么? 4. 试叙述温度和压力对 和 的影响。dydu练习fluid mechanics and machinery流体力学与流体机械流体力学与流体机械4 1-1. 力学意义上流体和固体有何不同习题答 静止时流体只承受压力不承受拉力,不具备抵抗剪切变形的能力;固体可以承受压力和拉力,具备抵抗剪切变形的能力。 本构

3、关系不同,流体的应力与应变率成比例关系 固体的应力与应变成比例关系。1-2 量纲与单位是同一概念吗? 答:不是同一概念。量纲是单位的类别。单位是量纲的基础,单位分国际单位制、工程单位制和英制等。fluid mechanics and machinery流体力学与流体机械流体力学与流体机械5 1-3-2. 200的水在两固定的平行板间做定常层流运动。取原点在下板,y轴垂直于平板,速度分布为u,试求两平板所受切应力习题q=0.33m3/s.m mmb4spae3002. 1)(623ybybqu)2(63ybbqdydu20306)2(6bqybbqy236)2(6bqybbqbybpa32330

4、101239975. 0)104(33. 0610002. 1)(yu)(yyofluid mechanics and machinery流体力学与流体机械流体力学与流体机械6)(yu)(y2/by)(yu)(yyo)2(6223ybbquybqdydu263)(623ybybqu)2(63ybbqdydu2by )2(63ybbqdydu)2(63ybbqdydu2by ?dyduybqdydu2630yybqdydu2630yfluid mechanics and machinery流体力学与流体机械流体力学与流体机械7 1-3-4 平板重mg=9.81n,面积a=2m2 ,板下涂满油,油

5、膜厚度h=0.5mm。以速度u=1m/s沿=450度的斜平壁下滑。试求油的粘度习题hudyduspauahmg3310734. 1222181. 9105 . 0sinafmgsinmgffluid mechanics and machinery流体力学与流体机械流体力学与流体机械8udyduuldldaf力矩m剪应力速度u2dru212ddldfrmlda602 n习题1-3-7已知:d=30cm,l=30cm,=0.2cm,=15rad/s,m=8.5nm求: 润滑油的动力粘滞系数。spaldm178. 0153014. 33 . 05 . 82 . 03433fluid mechanic

6、s and machinery流体力学与流体机械流体力学与流体机械9习题1-4-2已知水的体积弹性模量k=2*109pa,若温度保持不变,应加多大压强,才能使其体积压缩5%体积弹性模量)/(/2mnddpvdvdpk体积的相对压缩压力增量mpaevdvdp10010205. 09vdvededpfluid mechanics and machinery流体力学与流体机械流体力学与流体机械10作业: 2-2-2, 2-3-2,2-4-2,2-5-3 2-5-5fluid mechanics and machinery流体力学与流体机械流体力学与流体机械111 拉格朗日法 质点系法质点系法 以研究

7、个别流体质点的运动为基础,通过对每个流体质点运动规律的研究来获得整个液体运动的规律性。2 欧拉法 流场法 考察不同液体质点通过固定的空间点的运动情况来了解整个流动空间的流动情况,即着眼于研究各种运动要素的分布场。 任一物理量b:),(tzyxbb 流体质点坐标: ),(),(),(tcbazztcbayytcbaxxfluid mechanics and machinery流体力学与流体机械流体力学与流体机械12 拉格朗日法欧拉法分别描述有限质点的轨迹同时描述所有质点的瞬时参数表达式复杂表达式简单不能直接反映参数的空间分布直接反映参数的空间分布不适合描述流体微元的运动变形特性适合描述流体微元的

8、运动变形特性拉格朗日观点是重要的流体力学最常用的解析方法当地法当地法随体法随体法拉格朗日法拉格朗日法 欧拉法欧拉法质点轨迹:质点轨迹:)(a,b,c,tr rr r参数分布:参数分布:b = b(x, y, z, t) 描述方法描述方法描述流体运动的两种方法描述流体运动的两种方法fluid mechanics and machinery流体力学与流体机械流体力学与流体机械13u um m管轴处最大流速管轴处最大流速, ,求流量求流量q,q,平均流速和最大流速之间的关系平均流速和最大流速之间的关系圆管过流断面上的流速分布公式圆管过流断面上的流速分布公式 22/1rruumrmrmrrrrurrr

9、rruauq042220222)4121(2d2d平均流速平均流速muaq21u22ruqm2212rruu作业: 2-2-222/110rrufluid mechanics and machinery流体力学与流体机械流体力学与流体机械14作业: 2-3-2已知:直角坐标系中的速度场 ux=x+t; uy= -y+t;uz=0,求: t = 0 时过 m(-1,-1) 点的流线与迹线。1 流线 ( t 为参量 )解:tydytxdxc)tyln()txln(cec)ty)(tx(1xyc)ty)(txln(m(x=1,y=1,t=0)双曲线族fluid mechanics and machi

10、nery流体力学与流体机械流体力学与流体机械152. 迹线 ( t 是变量 )tydtdy, txdtdxtctaeex齐齐ctxlndtxdxxdtdx齐次方程齐次方程通解试探特解tx 1特特非齐次方程通解taexxxt1特特齐齐特解tbattxdtdx,adtdxbatx1 ba01,abatbatafluid mechanics and machinery流体力学与流体机械流体力学与流体机械16tydtdytctbeey齐齐ctylndtydyydtdy齐次方程齐次方程通解ty 1特特非齐次方程通解tbeyyyt1特特齐齐试探特解特解tbattydtdyabaty11b ,afluid

11、mechanics and machinery流体力学与流体机械流体力学与流体机械172. 迹线 ( t 是变量 )tbeyt1taext1tydtdy, txdtdxm(x=1,y=1,t=0) 0110be0110 ae a=2,b=2teyt12text12fluid mechanics and machinery流体力学与流体机械流体力学与流体机械18xxxxuutudtduayyyyuutudtduazzzzuutudtduazuuyuuxuutuaxxzxyxxxzuuyuuxuutuayyzyyyxyzuuyuuxuutuazzzzyzxzuutudtuda=时变加速度+位变加速

12、度当地加速度(时变加速度)迁移加速度(对流加速度)质点加速度fluid mechanics and machinery流体力学与流体机械流体力学与流体机械19体积流量 q=vaaqv )xlrrr()x( r211r1r2ldxdrdrdaaaaqaqxaqxvva1221221)xr(ralrr raqlrrlrrraaqa32212122)(2)(21收缩管的迁移加速度?fluid mechanics and machinery流体力学与流体机械流体力学与流体机械20作业: 2-4-2jzyxixyyxv)3()24(33已知直角坐标系中的速度场试问1该流场是几维流动,2求点(2,2,3)

13、处的加速度032433wzyxvxyyxuxyuyxxu21221332zvyyvxvyuvxuuaxyvvxvuay点(2,2,3)处,x=2,y=2,z=31326333zyxv402222242433xyyxu425022121222xyuyxxu12332yyvxv200445040 xyuvxuua10812340yvvxvuayfluid mechanics and machinery流体力学与流体机械流体力学与流体机械21作业: 2-5-3,已知速度场,进行运动分析22y22xyxbxu ,yxbyu,)y(x2bxyxu222xx222yy)y(x2bxyyu0)yuxu(21

14、xyz旋转角速度222cyx0)ydyxdx(kkxdykydxudyudxyx线变形率22222x)y(xx-ybyu0udivyx)yb/(xk22流线22222y)y(xx-ybxu角变形速率2222xy2yxyxxybuufluid mechanics and machinery流体力学与流体机械流体力学与流体机械22作业: 2-5已知速度场u=2y+3z,v=2z+3x,w=2x+3y.试分析点(1,1,1)的运动状态:1-线变形率,2-体积膨胀率,3-角变形速率,4-旋转角速度。旋转角速度23xz23zy523yxwuvwuvzxyzxy3z2y0 xuuu角变形速率0z0y0 x

15、wvuzzyyxx2z0y3xvvv线变形速率0z3y2xwww123xz221)zy(21123yx2wuvwuvyxz0zyxwvu体积膨胀率fluid mechanics and machinery流体力学与流体机械流体力学与流体机械23作业: 2-5kxukyuyx222cyx0)ydyxdx(k流线kxdykydxudyudxyx求: 过 m(a,b) 点的流线已知:直角坐标系中的速度场222cba2222bayxfluid mechanics and machinery流体力学与流体机械流体力学与流体机械24作业: 2-70u)yh(uuyx220 xuxx0yuyyuy)uy20

16、(21)yuxu(21xyz角变形速率旋转角速度uy)uy20(21)yuxu(21xyz求:角变形速度,线变形速度和涡量已知:直角坐标系中的速度场线变形速度涡量uyz22fluid mechanics and machinery流体力学与流体机械流体力学与流体机械25作业: 3-1-1-2,3-1-2-2,3-1-4, 3-2-2, 3-6-6,3-6-10第三章第三章fluid mechanics and machinery流体力学与流体机械流体力学与流体机械26作业:图示容器内有重度图示容器内有重度=9114pa=9114pa的液体;宽的液体;宽b b=1.2m=1.2m, ,长长l=1

17、.5ml=1.5m。液体深度液体深度h=0.9mh=0.9m。 求:当容器以求:当容器以g分别向上和向下分别向上和向下加速运动时容器底部受的水压力加速运动时容器底部受的水压力1. 体积力分量体积力分量边界条件:边界条件:z = 0,p = p0向下向上惯性力?ggagafzzzczfpzzf)zfyfxf(pzzydddddx000pccfpzhfppzfppzhz00向下向上020ghhfppzhkn.hbl)pa(ph35295121901149220z向上向上 kgfluid mechanics and machinery流体力学与流体机械流体力学与流体机械27作业:求使下面不可压流体的

18、速度场存在的条件求使下面不可压流体的速度场存在的条件zcybxau; zcybxau; zcybxauzyx333222111321czubyuaxuzyx2dzcyzu;byzu;axyuzyx12答102dzcybzayzuyuxuuzyxdzcyzubzyuayxuzyx2答20321cbazuyuxuuzyx02002dbcaz)db(y)ca(fluid mechanics and machinery流体力学与流体机械流体力学与流体机械28作业:3-1-1-2 3-1-2-2判断下面不可压流体的速度场是否满足连续性条件判断下面不可压流体的速度场是否满足连续性条件;2222yxvyxy

19、xuyyvyxxu2222222222222)(;)()(;)(2yxywyxzyxvyxxyzu1答1zwyvxuuxyxyxx2)(2)(322222答2032yxyvxuu20zw32222322222)()3(2)(42)(2yxyxyzyxxxyzyxyzxu322222232222222)()(2)(4)(4)()(2yxyxyyxxzyxxzyxyxyzyv0)()(432222zyxyxyxfluid mechanics and machinery流体力学与流体机械流体力学与流体机械29作业:3-1-4byaxu2例已知x方向的速度分布,试求y方向的速度分布。设y=0,v=00

20、yvxuu不可压二维连续性方程axxuyv2)(22)(xfaxyaxdyxfdyyvvy=0,v=0;f(x)=0axyv2fluid mechanics and machinery流体力学与流体机械流体力学与流体机械30作业:3-2-1 3-2-2如下不可压流体的速度场,粘性系数如下不可压流体的速度场,粘性系数 分析分析应力状态应力状态kyvkxu;答0yxbaukxux22kyvy22kxvkyu;3-2-13-2-2000)()yuxv(yxxy答02xux02yvykk)(k)yuxv(yxxy2fluid mechanics and machinery流体力学与流体机械流体力学与流

21、体机械31作业:应力分析如下不可压流体的速度场,粘性系数如下不可压流体的速度场,粘性系数;求应力求应力; zyxzcybxau; zyxzcybxau; zyxzcybxauzzzzyyyyxxxx04230320答0zyxcbau)c(b)zuyu(yzyzzyyz7) 34()()b(a)yuxu(xyxyyxxy321)()a(c)xuzu(zxzxxzzx523xxxaxu22yyybyu22zzzczu22fluid mechanics and machinery流体力学与流体机械流体力学与流体机械32第三章第三章作业:3-6-1盛水容器的固壁如图所示,自由液面上为大气压强。试定盛水

22、容器的固壁如图所示,自由液面上为大气压强。试定性画出斜壁或曲壁上的压强分布。性画出斜壁或曲壁上的压强分布。fluid mechanics and machinery流体力学与流体机械流体力学与流体机械33绘制下图所示容器ab侧壁的压强分布图。并注明个关键点的压强值和相对压强为零的等压面位置。已知油的容重=5000n/m3,容器上部表压读数为-1n/cm2。重力加速度g取值10m/s2。空气空气油油水水2m2m2m真空表真空表ab)kpa( hhpp10032-23)kpa(hhpp222125102030110251m/knpm/kg.gxppa)kpa()kpa( x.p1001250101

23、)kpa(20)kpa( 0)kpa(10fluid mechanics and machinery流体力学与流体机械流体力学与流体机械34第三章第三章作业:3-6-4水银气压器的读数在海平面上为水银气压器的读数在海平面上为h=760mmhgh=760mmhg, ,在山顶上的读数在山顶上的读数为为h h0 0=730mmhg=730mmhg。空气的密度为。空气的密度为=1.3kg/m3。试求山顶的高度。试求山顶的高度h hghpp0简单地采用如下关系,即不考虑温度随高度的变化简单地采用如下关系,即不考虑温度随高度的变化mhhhgghhgpphmm85.3133.113600)73.076.0(

24、)()(000fluid mechanics and machinery流体力学与流体机械流体力学与流体机械35第三章第三章作业:3-6-6如图所示如图所示对称贮液罐连通器对称贮液罐连通器,已知,已知a,b,c,和和h1,h2,h3,h4及及p0 ,试求试求a a罐底罐底压强压强pb和灌顶压强和灌顶压强pt的表达式,并讨论它们与的表达式,并讨论它们与h h1 1的关系的关系abcabptpbp0h1h4h3h2)(320hhgppbc443)(ghhhgppcabcpcpc1ghppatb432430)()(hhhhhppcbab1ghppabtfluid mechanics and mach

25、inery流体力学与流体机械流体力学与流体机械36如图所示,设如图所示,设a,b杯直径为杯直径为d1=4cm,u形管直径形管直径d2=4mm;杯中液体密度;杯中液体密度1=880kg/m3,u形管液体密度形管液体密度2=2950kg/m3;原先;原先a和和b杯中的液面处于同杯中的液面处于同一高度,一高度, u形管液位差形管液位差 h=0.04m。当在当在a杯上增加压力杯上增加压力p时,时,a杯液杯液面下降面下降y,b杯液面上升杯液面上升 y,u形管液位差形管液位差h=0.06m 。求此时的。求此时的p=p1-p2。作业:3-6-1021zaya)(11hxgppcu形管液面左端下降形管液面左端

26、下降z2221zdydghxygppc212)2(2/ )(2hhzhzhgyghppp112212)(ghhddghp121212)()()(8 . 9880)04. 006. 0()404(06. 08 . 9)8802950(2ppap1220727. 14 .1218p2xhp1h2ypcpczz12fluid mechanics and machinery流体力学与流体机械流体力学与流体机械37试述伯努利方程成立的条件试述伯努利方程成立的条件cpgzu2211.定常流动3.质量力只有质量力只有重力重力cpzug2212.无粘流动4.不可压流动不可压流动大前提小前提小前提+结论a沿流线

27、沿流线成立b沿涡线沿涡线成立c无旋流处处成立fluid mechanics and machinery流体力学与流体机械流体力学与流体机械38第第4 4章章作业: 4-2-6某系统中不可压缩非牛顿流体以速度分布某系统中不可压缩非牛顿流体以速度分布)/21 (01byuububybudybyudyuqmbmbmb2)/(sin(2)/cos(222/0202022流入二维平行平板槽内,式中流入二维平行平板槽内,式中u0为为x轴上最大速度,轴上最大速度,b为槽高。为槽高。在图示坐标系中设下游截面的速度分布变为在图示坐标系中设下游截面的速度分布变为),/cos(2byuum试求试求u0与与um的关系

28、。的关系。xybu0um2022201122bbdyuqdyuq2)/(2)/21 (2202/0202002011bubyyudybyudyuqbbbmmuububu422004)/()/21 (002/20020021bubyyudybyudyubbbfluid mechanics and machinery流体力学与流体机械流体力学与流体机械39第第4 4章章作业: 4-3-3在管壁和轴线上安装在管壁和轴线上安装u形管测压计如图所示。水管直径形管测压计如图所示。水管直径d=50cm,u形管内的密度形管内的密度h=800kg/m3 ,液位差液位差h=30cm。求轴线上的速度求轴线上的速度v

29、dhvp0p1ppcx)(0hxrgppcghgxpphc10221pvpgrppzzrzpzp1111ghrxgpphc)(ghpph)(022084. 13 . 08 . 9)10008001 (2)1 (2ghvhghgxpphc1smghvh/084. 1)1 (2fluid mechanics and machinery流体力学与流体机械流体力学与流体机械40第第4 4章章作业: 4-3-3集流器通过离心式风机从大气中吸取空气。在直径集流器通过离心式风机从大气中吸取空气。在直径d=20cm的流通的流通管壁上接单管测压计到一水槽内管壁上接单管测压计到一水槽内,如图所示。若水面上升如图所

30、示。若水面上升h=25cm,空气密度空气密度=1.29kg/m3 。求集流器中的空气流量。求集流器中的空气流量。0221pvpghpdxgghppww)2/(0smghdvaqw/935. 125. 08 . 929. 1100022 . 0414. 324322hdp0p0pvghvw221伯努利方程伯努利方程静力平衡方程静力平衡方程fluid mechanics and machinery流体力学与流体机械流体力学与流体机械41第第4 4章章作业: 4-4-3图示一图示一900转角收缩弯管,水从直径转角收缩弯管,水从直径d1=15cm的大管流入弯管,流速的大管流入弯管,流速v1=2.5m/

31、s,压强压强p1=68.6kpa,流入直径流入直径d2=7.5cm的水管。求保持弯管的水管。求保持弯管静止的力。静止的力。2222112121vpvp)(12vvqf伯努利方程伯努利方程动量平衡方程动量平衡方程d1d2v2v1xyf22224qvpdfx11214qvpdfy22224qvdpfx11214qvpdfy22212144vdvd211212212215)(21vpvvpp11222124vvddvfluid mechanics and machinery流体力学与流体机械流体力学与流体机械42作业: 4-4-9 如图所示,空气均流以速度如图所示,空气均流以速度u=1m/s流入半径

32、流入半径r=1.5cm的圆管,的圆管,流到距离入口流到距离入口l时时,形成抛物线速度分布形成抛物线速度分布u=um(1-r2/r2)。测得入口与测得入口与l截面上的压强差截面上的压强差p1-p2=2pa,空气密度空气密度=1.23kg/m3 ,求管求管壁对空气的摩擦阻力。壁对空气的摩擦阻力。rxoflp1p2u2rfdanvvs)(frppdanvvaa221)()(21baaaaadaidai pdai pdanvv2121)(22022)(1rurdrudanvvrarmrardrrrurdrudanvvk022220222)1 (2)(22203222202222222234)1 (31

33、)1 (urrrurrrdrrurkrmrmnruppf322222110123. 1015. 014. 3123. 131231)(平均流速平均流速muaq21ufluid mechanics and machinery流体力学与流体机械流体力学与流体机械43作业: 4-4-9 如图所示,一股薄的平板射流射向倾斜角如图所示,一股薄的平板射流射向倾斜角=300的平壁。射流的平壁。射流速度速度u=50m/s,厚度,厚度h=2cm ,不计重力和粘性力影响不计重力和粘性力影响。求求 1. 在平壁在平壁上分流的厚度上分流的厚度h1,h2;2. 求平板所受的水流冲击力和作用点的位求平板所受的水流冲击力和

34、作用点的位置置d。yxv1v2v2h1hedf22222121vpvp伯努利方程伯努利方程22222121vpvpapppp21vvv21221121bhvbhvvbhqqq21hhh 有分流的动量方程有分流的动量方程流入流出)vq()vq(f)cos()(2211qvvqvqrxcos021qqqrx)cos1(2)cos1(221qqqq)cos1(2)cos1(221hhhh 取深度取深度b=1fluid mechanics and machinery流体力学与流体机械流体力学与流体机械44作业: 4-4-9yxv1v2v2h1hedfsinsin)sin(0011hvvqvvqqqf射

35、流对平板的作用力等于射流对平板的作用力等于平板对射流的作用力,方向相反平板对射流的作用力,方向相反动量矩方程动量矩方程流入流出vqrvqrfr)()(adqvrfr定常定常22222111hvqhvqfe)cos1(2)cos1(221qqqq)cos1(2)cos1(221hhhhcos21)cos1 ()cos1(8122qhvqhvfecot21he fluid mechanics and machinery流体力学与流体机械流体力学与流体机械45第五章第五章 相似原理与量纲分析相似原理与量纲分析作业:5-2-3,5-2-5,5-6-1,5-6-2,5-6-3 5-6-5fluid me

36、chanics and machinery流体力学与流体机械流体力学与流体机械46 为基本量为基本量作业:5-2-3) , , , (xvf1111cbaxv2222cbadvxv2解得解得)dim(dim222cbaxv222)()()(3111cbamlllttml2222cbaxvx1) (vxfxfluid mechanics and machinery流体力学与流体机械流体力学与流体机械47 为基本量为基本量作业:5-2-5), , , , (gwhfq cbagqwwh 0解得解得)dim(dimcbagqwcbamlltltlm)()()(321202123gqw)dim(dim

37、zyxgwzyxmlltltml)()()(3211zyx1gw2123g1w),(gwwhfgwqww),(;wvwhwvfqgvwfluid mechanics and machinery流体力学与流体机械流体力学与流体机械48光滑球以速度光滑球以速度u=1.6m/s在水中运动,在水中运动,为求球受到的阻力为求球受到的阻力f,在风洞中用直径放在风洞中用直径放大到大到2倍的模型作试验。试求倍的模型作试验。试求 (1)为保证流动相似,风洞中的空气速度为保证流动相似,风洞中的空气速度u m应为应为多大?,(多大?,(2)若在风洞中测得的阻力)若在风洞中测得的阻力fm=0.95n,原型球的阻力多大

38、?已知空原型球的阻力多大?已知空气密度气密度m=1.28kg/m3,空气运动粘度,空气运动粘度(m =13 )等于等于13倍水的运动粘度。倍水的运动粘度。作业:5-6-1由由re数相等数相等smuudduduududrmmmmmme/4 .10213,)(122pefpppprcdfu2)(122mefmmmmrcdfu2nfddfmmpmpmpp39. 495. 0)28. 11000()21()132()()()(2222uufluid mechanics and machinery流体力学与流体机械流体力学与流体机械49作业:5-6-2fr数相等数相等 mhhm15. 0201几何相似几

39、何相似 lmpmpmmpprcllvvglvglvlgvf222llmplmmppccvvcvavaqq22mp流量q=avsmccqqll/19. 0472. 440342020340322pm),(2gwwhfgwqww2vpeu欧拉数相等欧拉数相等 2222mmvpvmmvpvvhvhvpvpomhchvvhhlmvmpmvv2224202 . 0几何相似几何相似 fluid mechanics and machinery流体力学与流体机械流体力学与流体机械50作业:5-6-3由由re数相等数相等mmmmmmeuuhhhuuhuhr,)(122pefprchfu2)(122mefmmmm

40、rchfu2knfhhfmmmmp83. 11500)292. 1204. 1()437. 01()21()()()(2222uu437. 05 . 0874. 0360010006010851. 132. 1mmmuuhhmhhm874. 0437. 0fluid mechanics and machinery流体力学与流体机械流体力学与流体机械51作业:5-6-5由由re数相等数相等6,uuuuddcduududrmmmmlmmmelllmlmmcccuucuaauqq/22m流量q=avsmcqcqqll/33. 36203m2vpeu欧拉数相等欧拉数相等 kpacpuuppupuplm

41、mmmm556. 06201222222fluid mechanics and machinery流体力学与流体机械流体力学与流体机械52练习一 某水库以长度比尺 做底孔放空模型实验,今在模型上测得放空时间为12小时,求原型上放空水库所需的时间。 100lc 12010012lmulmpctc/cttfr数准则数准则 lmpmpummpprcllvvcglvglvlgvf222mpummppmplmmmppptttctvtvllctvltvlvtlsst数标志流动的非定常性 fluid mechanics and machinery流体力学与流体机械流体力学与流体机械53作业: 5-9mpmq

42、fr数准则数准则 glvglvlgvfmmppr222lmpmpucllvvcllulmpmpccccvvaaqq22mp流量q=av/sml/sqccq3ll53753665630020202m2pfluid mechanics and machinery流体力学与流体机械流体力学与流体机械54作业:5-9fr数准则数准则 glvglvlgvfmmppr222lmpmpucllvvc222lfafcfv21v21原型计算公式原型计算公式fpppppclf221v2mfmmmmclf221v2mlummpmpmppfcccf)()ll()(f2222vvavfvvpeafu222fmfpcck

43、nfcccfcccfmllmlup24003001202020222fluid mechanics and machinery流体力学与流体机械流体力学与流体机械55作业:5-11fpbp2vpeu2122121222222111vvppvpvp11221212221491015pp)(pp)vv(p2125112504949m/n.ppff212567304949m/n.ppbbfluid mechanics and machinery流体力学与流体机械流体力学与流体机械56作业: 7-5 水在变截面竖管中流动。粗管直径水在变截面竖管中流动。粗管直径d1=300mm,v1=6m/s;为使两断

44、面的压力表读数相同,求细管直径为使两断面的压力表读数相同,求细管直径d2(不计水头损失)(不计水头损失)d1d2h=3mgpzgpz2222222111vv22212122114141vdvdavav1-21-2断面间的伯努利方程断面间的伯努利方程连续性方程连续性方程gghhzzpp2222212121vv212212222vvvghvghmm./ghdghdd52352122112111vvvvvd1212fluid mechanics and machinery流体力学与流体机械流体力学与流体机械57作业: 7-6 水银测压计测定水管中的点流速水银测压计测定水管中的点流速u,当读数当读数h

45、=60mm时,流速时,流速为多少为多少bbpxaaphhxppa1hppmabhppm12xppb21p2p222221112121ugpzugpz)(hg)pp(gum1221212s/m.h.gu853060061289261220221uzz613.mfluid mechanics and machinery流体力学与流体机械流体力学与流体机械58作业: 7-8空气空气在水平管道以流量在水平管道以流量q=2.5l/s流动。粗管直径流动。粗管直径d1=5cm,收缩收缩断面断面细管直径细管直径d2=2.5cm,相对压强相对压强0.1个工程大气压,个工程大气压,不计水头不计水头损失。问连接于收

46、缩断面上的水管可将水自容器内吸上多大高损失。问连接于收缩断面上的水管可将水自容器内吸上多大高度度222221112121vvpzpz1-21-2断面间的伯努利方程断面间的伯努利方程21zz d1d2q1ph)(pp21222121vv 2222112121vvpp22212144vvqddm.)dq(g)dd()dq(gpp241215142122241222221m.p11010102 phm.ph24012412fluid mechanics and machinery流体力学与流体机械流体力学与流体机械59作业: 7-10如图所示管道,出口接以收缩管,水流射入大气中的速度如图所示管道,出口接以收缩管,水流射入大气中的速度v2=20m/s流动。粗管直径流动。粗管直径d1=0.1m,收缩断面收缩断面细管直径细管直径d2=0.05m,两断面水头损失两断面水头损失0.5v12/2g。压力表断面至出口断面高差。压力表断面至出口断面高差 h=5m。求压力表的读数求压力表的读数1-21-2断面间的伯努利方程断面间的伯努利方程d1d2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论