第一章闭区间上连续函数的性质76382_第1页
第一章闭区间上连续函数的性质76382_第2页
第一章闭区间上连续函数的性质76382_第3页
第一章闭区间上连续函数的性质76382_第4页
第一章闭区间上连续函数的性质76382_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、闭区间上连续函数的性质闭区间上连续函数的性质 闭区间上的连续函数有着十分优良的性质,闭区间上的连续函数有着十分优良的性质,这些性质在函数的理论分析、研究中有着重这些性质在函数的理论分析、研究中有着重大的价值,起着十分重要的作用。下面我们大的价值,起着十分重要的作用。下面我们就不加证明地给出这些结论,好在这些结论就不加证明地给出这些结论,好在这些结论在几何意义是比较明显的。在几何意义是比较明显的。一、最大值和最小值定理一、最大值和最小值定理定义定义: :.)()()()()()()(,),(0000值值小小上的最大上的最大在区间在区间是函数是函数则称则称都有都有使得对于任一使得对于任一如果有如果

2、有上有定义的函数上有定义的函数对于在区间对于在区间ixfxfxfxfxfxfixixxfi 例如例如,sin1xy ,2 , 0上上在在 , 2max y; 0min y,sgn xy ,),(上上在在, 1max y; 1min y,), 0(上上在在. 1minmax yy定理定理1(1(最大值和最小值定理最大值和最小值定理) ) 在闭区间上连续在闭区间上连续的函数一定有最大值和最小值的函数一定有最大值和最小值. .).()(),()(,)(2121xffxffbaxbabacxf 有有使得使得则则若若xyo)(xfy ab2 1 注意注意: :1.若区间是开区间若区间是开区间, 定理不一

3、定成立定理不一定成立; 2.若区间内有间断点若区间内有间断点, 定理不一定成立定理不一定成立.xyo2 )(xfy xyo)(xfy 211定理定理2(2(有界性定理有界性定理) ) 在闭区间上连续的函数一定在闭区间上连续的函数一定在该区间上有界在该区间上有界. .证证,)(上连续上连续在在设函数设函数baxf,bax ,)(mxfm 有有,maxmmk 取取.)(kxf 则有则有.,)(上有界上有界在在函数函数baxf二、介值定理二、介值定理定义定义: :.)(, 0)(000的零点的零点称为函数称为函数则则使使如果如果xfxxfx 定理定理 3(3(零点定理零点定理) ) 设函数设函数)(

4、xf在闭区间在闭区间 ba,上连续,且上连续,且)(af与与)(bf异号异号( (即即0)()( bfaf),),那末在开区间那末在开区间 ba,内至少有函数内至少有函数)(xf的一个零的一个零点点, ,即至少有一点即至少有一点 )(ba ,使,使0)( f. .),(0)(内至少存在一个实根内至少存在一个实根在在即方程即方程baxf 几何解释几何解释:.,)(轴至少有一个交点轴至少有一个交点线弧与线弧与则曲则曲轴的不同侧轴的不同侧端点位于端点位于的两个的两个连续曲线弧连续曲线弧xxxfy xyo)(xfy ab1 2 3 定定理理4 4( (介介值值定定理理) ) 设设函函数数)(xf在在闭

5、闭区区间间 ba, 上上连连续续,且且在在这这区区间间的的端端点点取取不不同同的的函函数数值值 aaf )( 及及 bbf )(, , 那那末末,对对于于a与与b之之间间的的任任意意一一个个数数c,在在开开区区间间 ba,内内至至少少有有一一点点 ,使使得得cf )( )(ba . . 证证,)()(cxfx 设设,)(上连续上连续在在则则bax cafa )()( 且且,ca cbfb )()( ,cb , 0)()( ba 由零点定理由零点定理,使使),(ba , 0)( , 0)()( cf 即即.)(cf xyo)(xfy ababmm1x2xc1 2 3 几何解释几何解释:.)(至少

6、有一个交点至少有一个交点直线直线与水平与水平连续曲线弧连续曲线弧cyxfy 例例1 1.)1 , 0(01423至少有一根至少有一根内内在区间在区间证明方程证明方程 xx证证, 14)(23 xxxf令令,1 , 0)(上连续上连续在在则则xf, 01)0( f又又, 02)1( f由零点定理由零点定理,使使),(ba , 0)( f, 01423 即即推论推论 在闭区间上连续的函数必取得介于最大在闭区间上连续的函数必取得介于最大值值 与最小值与最小值 之间的任何值之间的任何值. .mm.)1 , 0(01423 内至少有一根内至少有一根在在方程方程 xx例例2 2.)(),(.)(,)(,)

7、( fbabbfaafbaxf使得使得证明证明且且上连续上连续在区间在区间设函数设函数证证,)()(xxfxf 令令,)(上连续上连续在在则则baxfaafaf )()(而而, 0 bbfbf )()(, 0 由零点定理由零点定理,使使),(ba , 0)()( ff.)( f即即例例3 )()(), 0)2()0(2 , 0)(affaaffaxf 使使证明证明上连续,且上连续,且在在设设证证则则记记)()()(axfxfxf )(, 0(, 0)(的定义域的定义域即即上连续上连续在在xfaaxf)()0()0(afff 且且)0()()2()()(fafafafaf )()0(aff 若若

8、即为所求即为所求则则0 )()0(aff 若若0)()0( aff则则由零点定理知由零点定理知0)(), 0( fa 使使)()(aff 即即总之总之)()(), 0affa 使使注注方程方程f(x)=0的根的根函数函数f(x)的零点的零点有关闭区间上连续函数命题的证明方法有关闭区间上连续函数命题的证明方法10直接法:先利用最值定理,再利用介值定理直接法:先利用最值定理,再利用介值定理20间接法(辅助函数法):先作辅助函数,间接法(辅助函数法):先作辅助函数, 再利用零点定理再利用零点定理辅助函数的作法辅助函数的作法(1)将结论中的)将结论中的(或或x0或或c)改写成改写成x(2)移项使右边为

9、)移项使右边为0,令左边的式子为,令左边的式子为f(x)则则f(x)即为所求即为所求 区间一般在题设中或要证明的结论中已经给出,区间一般在题设中或要证明的结论中已经给出,余下只须验证余下只须验证f(x)在所讨论的区间上在所讨论的区间上连续,连续,再比较再比较一下两个端点处的函数值的符号,或指出要证的值一下两个端点处的函数值的符号,或指出要证的值介于介于f(x)在所论闭区间上的最大值与最小值之间。在所论闭区间上的最大值与最小值之间。三、小结三、小结四个定理四个定理有界性定理有界性定理;最值定理最值定理;介值定理介值定理;根的存在性定理根的存在性定理.注意注意1闭区间;闭区间; 2连续函数连续函数这两点不满足上述定理不一定成立这两点不满足上述定理不一定成立解题思路解题思路1.1.直接法直接法:先利用最值定理先利用最值定理,再利用介值定理再利用介值定理;2.2.辅助函数法辅助函数法: :先作辅助函数先作辅助函数f(x),再利用零点定理再利用零点定理;思考题思考题下述命题是否正确?下述命题是否正确? 如如果果)(xf在在,ba上上有有定定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论