版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章超声波发射声场与规则反射体的回波声压 超声波探头(波源)发射的超声场,具有特殊的结构。只有当缺陷位于超声场内时,才有有可能被发现。由于液体介质中的声压可以进行线性叠加,并且测试比较方便。因此对声场的理论分析研究常常从液体介质入手,然后在一定条件下过渡到固体介质。 又由于实际探伤中广泛应用反射法,因此本章在讨论了超声波发射声场以后,还讨论了各种规则反射体的回波声压。第一节 纵波发射声场一、圆盘波源辐射的纵波声场 1.波源轴线上声压分布在不考虑介质衰减的条件下,图2.1所
2、示的液体介质中圆盘源上一点波源ds辐射的球面波在波源轴线上Q点引起的声压为 式中 Po波源的起始声压; ds点波源的面积; 波长; r点波源至Q点的距离;
3、 波数,=/c=2/; 圆频率,=2f; t时间。根据波的迭加原理,作活塞振动的圆盘波源各点波源在轴线上Q点引起的声压可以线性迭加,所以对整个波源面积积分就可以得到波源轴线上的任意一点声压为
4、 其声压幅值为
5、0; (2.1)式中 Rs波源半径; 轴线上Q点至波源的距离。上述声压公式比较复杂,使用不便,特作如下简化。当2R,时,根据牛顿二项式 将(2.1)式简化为
6、 (2.2)根据sin(很小时)上式可简化为
7、60; (2.3)式中 Fs波源面积, (2.3)式表明,当3R;/A时,圆盘源轴线上
8、的声压与距离成反比,与波源面积成正比。波源轴线上的声压随距离变化的情况如图2.2所示。(1)近场区:波源附近由于波的干涉而出现一系列声压极大极小值的区域,称为超声场的近场区,又叫菲涅耳区。近场区声压分布不均,是由于波源各点至轴线上某点的距离不同,存在波程差,互相迭加时存在位相差而互相干涉,使某些地方声压互相加强,另一些地方互相减弱,于是就出现声压极大极小值的点。波源轴线上最后一个声压极大值至波源的距离称为近场区长度,用N表示。声压P有极大值,化简得极大值对应的距离为
9、0; 式中n=O、1、2、3、<(Ds-一x)/2的正整数,共有n+1个极大值,其中n=0为最后一个极大值。因此近场长度为
10、160; (2.4)声压P有极小值,化简得极小值对应的距离为
11、 式中,n=0、1、2、3、<Ds/2的正整数,共有n个极小值。由(2.4)式可知,近场区长度与波源面积成正比,与波长成反比。近场区探伤定量是不利的,处于声压极小值处的较大缺陷回波可能较低,而处于声压极大值处的较小缺陷回波可能较高,这样就容易引起误判,甚至漏检,因此应尽可能避免在近场区探伤定量。(2)远场区:波源轴线上至波源的距离x>N的区域称为远场区,又叫富琅和费区。远场区轴线上的声压随距离增加单调减少。当x>3N时,声压与距离成反
12、比,近似球面波的规律,P=PoFs/x这是因为距离足够大时,波源各点至轴线上某一点的波程差很小,引起的相位差也很小,这样干涉现象可略去不计。所以远场区轴线上不会出现声压极大极小值。2.波束指向性和半扩散角至波源充分远处任意一点的声压如图2.3所示。点波源ds在至波源距离充分远处任意一点M(r,O)处引起的声压为
13、; 整个圆盘源在点M(r,)处引起的总声压幅值为
14、 (2.5)式中 r点M(r,)至波源中心的距离; r与波源轴线的夹角; J1第一阶贝赛尔函数。
15、160; 波源前充分远处任意一点的声压P(r,)与波源轴线上同距离处声压P(r,)之比称为指向性系数,用Dc表示。
16、60; (2.6)令y=Rssin,则 Dc与y的关系如图2.4。由图2.4可知:(1)Dc=P(r,)/P(r,)l。
17、这说明超声场中至波源充分远处同一横截面上各点的声压是不同的,以轴线上的声压为最高。实际探伤中,只有当波束轴线垂直于缺陷时,缺陷回波最高就是这个原因。(2)当y=Rssin=3.83,7.02,10.17,时,Dc=P(r,)/P(r,)=0,即P(r,)=O。这说明圆盘源辐射的纵波声场中存在一些声压为零的圆锥面。由y=R,sin0=3.83得: (2.7)式中o一圆盘源
18、辐射的纵波声场的第一零值发散角,又称半扩散角。此外对应于y=7.02,10.17,的发散角称为第二、三、零值发散角。 (3)当y>3.83,即0>0。时,Dc<O.15。这说明半扩散角o以外的声场声压很低,超声波的能量主要集中在半扩散角以内。因此可以认为半扩散角限制了波束的范围。20以内的波束称
19、为主波束,只有当缺陷位于主波束范围时,才容易被发现。以确定的扩散角向固定的方向辐射超声波的特性称为波束指向性。由于超声波主波束以外的能量很低和介质对超声波的衰减作用,使第一零值发射角以外的波束只能在波原附近传播,因此在波源附近形成一些副瓣。 由o一70/D,可知,增加探头直径Ds,提高探伤频率f,半扩散角将减小,即可以改善波束指向性,使超声波的能量更集中,有利于提高探伤灵敏度。但由 可知,增大Ds和f,近场区长度N增加,对探伤不利。因此在实际探伤中要综合考虑Ds和f对o及N的影响,合理选择Ds和f,一般是在保证探伤灵敏度的前提下尽可能减少近场区长度。
20、0; 3.波束未扩散区与扩散区 超声波波源辐射的超声波是以特定的角度向外扩散出去的,但并不是从波源开始扩散的。而是在波源附近存在一个未扩散区b,其理想化的形状如图2.5。
21、; (2.8) 在波束未扩散区b内,波束不扩散,不存在扩散衰减,各截面平均声压基本相同。因此薄板试块前几次底波相差无几。到波源的距离x>b的区域称为扩散区,扩散区内波束扩散衰减。下面举例说明近场区长度N、半扩散角。糯未扩散区长度b的计算。若用f=2.5MHz,Ds=20mm的探头探测波速cL=5900m/s的钢工件,那么N、。和b分别为4.超声场截面声压分布前面讨论的是波源轴线上的声压分布情况,未涉及声场截面各点的声压分布情况。下面就来讨论超声场横截面与纵截
22、面上声压特点。(1)横截面声压分布:超声场近场区与远场区各横截面上的声压分布是不同的。如图2.6所示,在x<N的近场区内,存在中心轴线上声压为0的截面,如=0.5N的截面,中心声压为0,偏离中心声压较高。在xN的远场区内,截面中心声压最高,偏离中心声压逐渐降低。实际探伤中,测定探头波束轴线的偏离和横波斜探头的K值时。规定要在2N以外进行就是这个原因。 (2)纵截面声压分布:超声场近场区纵截面声压分布如图2.7所示,图中Rs为波源半径,K为波数, 图中各曲线为等压线,数字表示P/P。的比值。由该图可知,波源附近纵截面上声压分布十分复杂而且kRs愈大就愈复
23、杂。 二、矩形波源辐射的纵波声场如图2.8所示,矩形波源作活塞振动时,在液体介质中辐射的纵波声场同样存在近场区和未扩散角。近场区内声压分布复杂,理论计算困难。远场区声源轴线上任意一点Q处的声压用液体介质中的声场理论可以导出,其计算公式为 (29)式中Fs矩形波源面积,Fs=4ab。
24、0; 当=r=0时,由(2.9)式得远场轴线上某点的声压为
25、 (2.10) 当=0时,则(2.9)式得YOZ平面内远场某点的声压为
26、 (2.11)这时在Y0Z平面内的指向性系数Dc为
27、; (2.12)由(2.12)式得Dc一y的关系曲线如图2.9所示。由图2.9可知,当y=Kbsir=时,Dc=0。这时对应的YOZ平面内半扩散角0为
28、60; (2.13)同理可导出XOZ平面内的半扩散角0为
29、160; (2.14)由以上论述可知,矩形波源辐射的纵波声场与圆盘源不同,矩形波源有两个不同的半扩散角,其声场为矩形,如图2.10所示。 矩形波源的近场区长度为
30、 (2.15)三、近场区在两种介质中的分布公式 只适用均匀介质。实际探伤中,有时近场区分布在两种不同的介质中,如图2.11所示的水浸探伤,超声波是先进入水,然后再进入钢中。当水层厚度较小时,近场区就会分布在水、钢两种介
31、质中,设水层厚度为L,则钢中剩余近场区长度N为 (2.16)式中
32、0; N2介质钢中近场长度; C1一一介质I水中波速; C2介质钢中波速; 2介质钢中波长。 例如,用2.5MHz、14mm纵波直探头水浸探伤钢板,已知水层厚度为20mm,钢中CL=5900mm/s,水中CL=1480m/s。求钢中近场区长度N。解:钢中纵波波长
33、 钢中近场区长度N: 四、实际声场与理想声场比较以上讨论的是液体介质,波源作活塞振动,辐射连续波等理想条件下的声场,简称理想声场。实际探伤往往是固体介质。波源非均匀激发,辐射脉冲波声场,简称实际声场。它与理想声场是不完全相同的。 由图2.12可知,实际声场与理想声场在远场区轴线上声压分布基本一致。这是因为,当至波源的距离足够远时,波源各点至轴线上某点的波程差明显减少,从而使波的干涉大大减弱,甚至不产生干涉。但在近场区内,实际声场与理想声场存在明显区别。理想声场轴线上声压存在一系列极大极小值,且极大值为2P0,极小值为零。实
34、际声场轴线上声压虽然也存在极大极小值,但波动幅度小,极大值远小于2P0,极小值也远大于零,同时极值点的数量明显减少。这可以从以下几方面来分析其原因。(1)近场区出现声压极值点是由于波的干涉造成的。理想声场是连续波,波源各点辐射的声波在声场中某点产生完全干涉。实际声场是脉中波,脉冲波持续时间很短,波源各点辐射的声波在声场中某点产生不完全干涉或不产生干涉。从而使实际声场近场区轴线上声压变化幅度小于理想声场,极值点减少。(2)根据付里叶级数,脉冲波可以视为常数项和无限个n倍基频的正弦波、余弦波之和,设脉冲波函数为f(t),则 式中 t时间;
35、 n正整数,l,2,3; 一圆频率,=2f=2/T; a0、anbn一由f(t)决定的常数。由于脉冲波是由许多不同频率的正弦波、余弦波所组成,又每种频率的波决定一个声场,因此总声场就是各不同声场的迭加。可知,波源轴线上的声压极值点位置随波长而变化。不同f的声场极值点不同,它们互相迭加后总声压就趋于均匀,使近场区声压分布不均的情况得到改善。脉冲波声场某点的声压可用下述方法采求得。设声场中某处的总声强为I,则即
36、; 所以超声场中该处的总声压P为式中 In频率为fn的谐波引起的声强; Pn频率为fn的谐波引起的声压。(3)实际声场的波源是非均匀激发,波源中心振幅大,边缘振幅小。由于波源边缘引起的波程差较大,对干涉影响也较大。因此这种非均匀激发的实际波源产生的干涉要小于均匀激发的理想波源。当波源的激发强度按高斯曲线变化时,近场区轴线上的声压将不会出现极大极小值,这就是高斯探头的优越性。 (4)理想声场是针对液体介质而言的,而实际探伤对象往往是固体介质。在液体介质中,液体内某
37、点的压强在各个方向上的大小是相同的。波源各点_在液体中某点引起的声压可视为同方向而进行线性迭加。在固体介质中,波源某点在固体中某点引起的声压方向在二者连线上。对于波源轴线上的点,由于对称性,使垂直于轴线方向的声压分量互相抵消,使轴线方向的声压分量互相迭加。显然这种迭加干涉要小于液体介质中的迭加干涉,这也是实际声场近场区轴线上声压分布较均匀的一个原因。 第二节 横波发射声场一、 假想横波波源目前常用的横波探头,是使纵波
38、倾斜入射到界面上,通过波型转换来实现横波探伤的。当L=a1a1时,纵波全反射,第二介质中只有折射横波。 横波探头辐射的声场由第一介质中的纵波声场与第二介质中的横波声场两部分组成,两部分声场是折断的,如图2.13所示,为了便于理解计算,特将第一介质中的纵波波源转换为轴线与第二介质中横波波束轴线重合的假想横波波源,这时整个声场可视为由假想横波波源辐射出来的连续的横波声场。当实际波源为圆形时,其假想横波波源为椭圆形,椭圆的长轴等于实际波源的直径Ds,短轴Ds为
39、; (2.17)式中 横波折射角;
40、160; 纵波入射角。二、横波声场的结构1.波束轴线上的声压横波声场一样由于波的干涉存在近场区和远场区。当3N时,横波声场波束轴线上的声压为 &
41、#160; (2.18)式中 K系数; Fs波源的面积; s2第二介质中横波波长; 轴线上某点至假想波源的距离。由以上公式可知,横波声场中,当z3N时,波束轴线上的声压与波源面积成正比,与至假想波源的距离成反比,类似纵波声场。
42、160; 2近场区长度 横波声场近场区长度为
43、60; (2.19)式中 N一近场区长度,由假想波源O算起。由以上公式可知,横波声场的近场区长度和纵波声场一样,与波长成反比,与波源面积成横波声场中,第二介质中的近场区长度N为
44、160; (2.20)式中 Fs一波源面积; z_介质中横波波长; L一入射点至波源的距离; L2一入射点至假想波源的距离。我国横波探头常采用K值(K=gs)来表示横波折射角的大小,常用K值为1.O、1.5、2.0和2.5等。为了
45、便于计算近场区长度,特将K与cs/cs、g/g的关系列于表2.1。表2.1 cs/cs、g/g与K值的关系K 值1.01.52.02.5cs/cs0.880.780.680.6g/g0.750.660.580.5例1,试计算2.5MHz、14×16mm方晶片K1.0和K2.0横波探头的近场区长度N。(钢中Cn=3230m/s)由上计算表明,横波探头晶片尺寸一定,K值增大,近场区长度将减小。 例2,试计算2.5MHz、10×12mm方晶片K2.0横波探头,有机玻璃中入射点至晶片的距离为12mm,求此探头在
46、钢中的近场区长度N。(钢中cn=3230ms) 3.半扩散角 从假想横波声源辐射的横波声束同纵波声场一样,具有良好的指向性可以在被检材料中定向辐射,只是声束的对称性与纵波声场有所不同,如图2.14所示。 在声束轴线与界面法线所决定的入射平面内,声束不
47、再对称于声束轴线,而是声束上半扩散角上。上声束下半扩散角下 &
48、#160; (2.1) 计算通过声束轴线与入射平面垂直的平面内,声束对称于轴线,这时半扩散角o可按下式计算。 对于圆
49、片形声源: &
50、#160; (2.22)对于矩形正方形声源:
51、60; (2.23) 下面举例说明横波和纵波声场半扩散角的比较。 例1,用2.5MHz、12mmK2横波斜滩头探伤钢制工件,已知探头中有机玻璃CL1=273m/s,钢中横波声速Cs2=3230m/s,求钢中横波声场的半散角。解:有机玻璃中纵波波长
52、60; 2钢中横波波长 过轴线与入射平面垂直的平面内
53、0; 入射平面内半扩散角上、下计算结果如图2.15所示。例2,用2.5MHz、12mm纵波直探头探伤钢工件,钢中CL=5900m/s,求其半扩散角。 由上述两个例子可以看出,在其他条件相同时,横渡声泵的指向性比纵波好,横波能量更集中一些。因为横波波长比纵波短。 第三节 聚焦声源发射声场一、聚焦声场的形成常规的纵波声场或横波声场,声柬是以一定的角度向外扩散出去的,能量不集中,缺陷定量精度差,对粗晶材料检测困难大,60年
54、代发展起来的聚焦声源发射的声场具有声束细,能量集中,分辨力和灵敏度高等优点。用聚焦探头测定大型缺陷的面积或指示长度比常规探头精确。用聚焦探头探测粗晶材料也有了较大的进展。聚焦探头分为液浸聚焦和接触聚焦两太类。其中液浸聚焦技术发展得比较完善,接触聚焦目前还在探讨与发展之中。采用聚焦理论研制的接触聚焦直、斜探头用于实际检测,近几年收到了较为满意的效果。 液浸聚焦如图2.16所示,它是利用平面波入射到C1>C2的凸透镜(从入射方向看)上其 &
55、#160; 折射波聚焦的原理制成的。当声透镜为球面镜时,获得点聚焦;当声透镜为柱面镜时,获得线聚焦。 接触聚焦如图2.17所示,它与液浸聚焦不同的是:在声透镜前面加了一个透声楔块,并且要求声透镜中的声速C1大于透声楔块中的声速C2,C1C2。由图可知,它是利用平面波入射到C1C2的凸透镜上其折射波聚焦,该聚焦折射波再入射到C2C3的平界面上其折射波在工件内进一步聚焦。 &
56、#160; 二、聚焦声场的特点与应用 下面以水浸聚焦为例来说明聚焦声场的情况。 1.聚焦声束轴线上的声压分布设聚焦声源半径为R,在声程x>R,焦距F>R的条件下,聚焦声束轴线上的声压近似表达式为:
57、160; (2.24)式中Po一波源起始声压; F焦距,F=C1r/(C1-C2),其中r为声透镜曲率半径,C1为声透镜中声速,C2为水中声速; X至波源的距离; B一参数,B=R2/F=N/F,R为波源半径。
58、0; 在焦点处,X=F,上式可简化为 P=Bo
59、 (2.25) 由(2.25)式可知,焦点处的声压随B值增加而升高。当B=10时,P=31.4P
60、0,可见焦点处的声压之高。 由(2.24)式可得图2.18所示的聚焦声束轴线上焦点附近的声压变化情况。不难看出,焦距F愈小,B值就愈大,聚焦效果就愈好。当焦距F大于或等于近场区长度N时,B=N/F1,这时几乎没有聚焦作用。因此焦距应选在近场区长度以内,否则就失去了聚焦的意义。 2.焦柱的几何尺寸 以上讨论的聚焦声场是从几何声学理论出发在理想条件下得到的,聚焦声束最后会聚于一点(或线),实际上这种情况是不存在的,因为几何声学忽略了声波的波动性,在焦点附近声波存在干涉。此外声透镜存在一定的球
61、差,并非完全会聚于一点。因此聚焦声束的焦点是一个聚焦区,该聚焦区呈柱形,其焦柱直径与长度可用以下近似公式表示。 dF/2R
62、0; (2.26) LF2/R2
63、60; (2.27) L/d=2F/R
64、;
65、0; (2.28)式中 d一焦柱直径,以焦点处最大声压降低6dB来测定; L焦柱长度,以焦点处最大声压降低6dB来测定; 一波长; F一焦距; R一波源半径; 由以上公式可知,焦柱直径d及长度L与波长、焦距F、波源半径R有关。当R一定时,d、L随、F增加而增大。二者的比值L/d为一常数,即为焦距与波源
66、半径之比的二倍。 3.聚焦探头的应用 聚焦探头具有声束细、灵敏度高等优点,在铸钢件及奥氏体钢探伤、缺陷面积或指示长度的测定和裂纹高度的测定等方面得到较好的应用。 铸钢件及奥氏体钢晶粒粗大、衰减严重,常规探头探伤散乱反射显著,容易产生草状回波,信噪比低,缺陷判别困难大。采用聚焦探头探伤,由于声束细,产生散乱反射的几率小,因此信噪比高,灵敏度高有利于缺陷的检出。 随着断裂力学的发展,对缺陷定量的要求日益提高,然而常规探头测定的缺陷面积或指示长度往往与缺陷实
67、际尺寸相差较大。实验证明,使用聚焦探头利用多重分贝法(如6dB,12dB等)来测定缺陷面积或指示长度要比常规探头精确得多。因为聚焦探头声束收敛。 裂纹是最危险的缺陷,测定裂纹高度已引起探伤界的高度重视。人们曾设想采用各种方法来测定裂纹的高度,但测试精度较低。近年来采用聚焦探头利用端点峰值回波法来测定裂纹的高度,获得较好的效果,精度明显提高。 聚焦探头也有不足,最大缺点是声束细,每次扫查范围小,探测效率低。另外,探头的通用性差,每只探头仅适用于探测某一深度范围内的缺陷。 应用聚焦探头测定缺
68、陷尺寸的方法已在实际生产中得到应用。例如,法国已利用水浸聚焦探伤装置检测核反应堆压力壳,美国也已制成汽轮机转子内孔聚焦探伤装置。我国也开始利用聚焦探头对电站锅炉、压力容器管道焊透和某些铸钢件进行检测。收到一定的成效。 第四节 规则反射体的回波声压 前面讨论的是超声波发射声场中的声压分布情况,实际探伤中常用反射法。反射法是根据缺陷反射回波声压的高低来评价缺陷的大小。然而工件中的缺陷形状性质各不相同,目前的探伤技术还难以确定缺陷的真实大小和形状。回波声压相同的缺陷的实际大小可能相差很大,为此特引用当量法。当量法是指在两样的探测条件下,当自然
69、缺陷回波与某人工规则反射体回波等高时,则该人工规则反射体的尺寸就是此自然缺陷的当量尺寸。自然缺陷的实际尺寸往往大于当量尺寸。超声波探伤中常用的规则反射体有平底孔、长横孔、短横孔、球孔和大平底面等,下面分别讨论以上各种规则反射体的回波声压一、平底孔回波声压如图2.19所示,在3N的圆盘波源轴线上存在一平底孔(圆片形)缺陷,设波束轴线垂直于平底孔,超声波在平底孔上全反射,平底孔直径较小,表面各点声压近似相等。根据惠更斯原理可以把平底孔当作一个新的圆盘源,其起始声压就是入射波在平底孔处的声压 探头接收到的平底孔回波声压Pf为
70、160; (2.29)式中 Po一探头波源的起始声压; Fs一探头波源的面积, Ff一平底孔缺陷的面积, 一波长; 一平底孔至波源的距离。由(2.29)式可知,当探测条件(Fs,)一定时,平底孔缺陷的回波声压或波
71、高与平底孔面积成正比,与距离平方成反比。任意两个距离直径不同的平底孔回波声压之比为: 二者回波分贝差为: (2.30)(1)当Df1=Df2,2=2x1时12=201gPf1/Pf2=40lgx2/x1
72、=401g2=12(dB)这说明平底孔直径一定,距离增加一倍,其回波下降12dB。(2)当1=x2,Dfl=2Df2时12=201gPf1/Pf2=401gDfl/Df2=401g2=12(dB)这说明平底孔距离一定,直径增加一倍,其回波升高12dB。二、长横孔回波声压如图2.20所示,当3N,超声波垂直入射,全反射,长横孔直径较小,长度大于波束截面尺寸时,超声波在长横孔表面的反射就类似予球面波在柱面镜上的反射。以a=,f=Df/4,P1/a=P0Fs/代入(1.54)式,取“+”,并考虑到Df,从而得到长横孔回声压Pf为
73、 (2.31)式中 Df长横孔的直径。由上式可知,探测条件(Fs、)一定时,长横孔回波声压与长横孔的直径平方根成正比,与距离的二分之三次方成反比。任意两个距离、直径不同的长横孔回波分贝差为: &
74、#160;
75、(2.32)(1)当Df1=Df2,2=21时12=20|gPfl/Pf2=301gx2/xl=301g2=9(dB)这说明长横孔直径一定,距离增加一倍,其回波下降9dB。(2)当1=X2,Dfl=2Df2时12=201gPf1/Pf=101gDf1/Df2=101g2=3(dB)这说明长横孔距离一定,直径增加一倍,其回波上升3dB。三、短横孔回波声压短横孔是长度明显小于波束截面尺寸的横孔,设短横孔直径为Df,长度为LfO当z3N时,超声波在短横孔上的反射回波声压为
76、; (2.33)由上式可知,当探测条件(Fs、
77、)一定时,短横孔回波声压与短横孔的长度成正比,与直径的平方根成正比,与距离的平方成反比。任意两个距离、长度和直径不同短横孔的回波分贝差为: (2.
78、34)(1)当Df1=Df2,Lfl=Lf2,x2=2l时12=201gPf1/Pf2=401g2/l=401g2=12(dB)这说明短横孔直径和长度一定,距离增加一倍,其回波下降12dB,与平底孔变化规律相同。(2)当Dfl=Df2,1=X2,Lf1=2Lf2时12=201gPf1/Pf2=20Lglf1/Lf2=20Lg2=6(dB)这说明短横孔直径和距离一定,长度增加一倍,其回波上升6dB。(3)当xlx2,Isl:If2,Dn=2Dr212=201gPfl/Pf2=101gDfl/Df2=101g2=3(dB)这说明短横孔长度和距离一定,直径增加一倍,其回波升高3dB。四、球孔回波声压
79、如图2.21所示,设球孔直径为Df,超声波垂直入射,全反射,Df足够小。当3N时,超声波在球孔上的反射就类似于球面波在球面镜上的反射,以a=,f=Df/4P1/a=P0Fs/代入(1.53)式,取“十”,并考虑到D1<<,从而得到球孔回波声压P,为 &
80、#160; (2.35) 由上式可知,当探测条件(Fs、)一定时,球孔回波声压与球孔的直径成正比,与距离的平方成反比。任意两个直径、距离不同的球孔的回波分贝差为:
81、60; (2.36)这说明球孔直径一定,距离增加一倍,其回波下降12dB,与平底孔变化规律相同。这说明球孔距离不变,直径增
82、加一倍,其回波上升6dB。五、大平底面回波声压如图2.22所示,当x3N时。超声波在与波束轴线垂直、表面光洁的大平底面上的反射就是球面波在平面上的反射,其回波声压PB为
83、 (2.37)由上式可知,当探测条件(Fs、)一定时,大平底面的回波声压与距离成反比。两个不同距离的大平底面回波分贝差为:
84、 (2.38)这说明大平底面距离增加一倍,其圆波下降6dB。
85、 六、圆柱曲底面回波声压l.实心圆柱体 超声波径向探伤3N的实心圆柱体,类似于球面波在凹柱曲底面上的反射。以a=,f=Df/4,P1/a=P0Fs/代入(1.54)式,取“”得实心圆柱凹曲底面的回波声压为
86、 (2.39)这说明实心圆柱体回波声压与大平底面回波声压相同。2.空心圆柱体超声波外柱面径向探伤空心圆柱体,3N,类似于球面波在凸柱面上的反射,如图2.23探头A位置,以a=(D-d)/2,f=d/4,P1/a=P0Fs/代入(1.54)式,并取“+”,得外圆探伤空心圆柱体凸柱曲底面的圆波声压为
87、60; (2.40)上式说明外圆探伤空心圆柱体,其回波声压低于同距离大平底回波声压。因为凸柱面反射波发散。超声波内孔探伤圆柱体,类似子球面波的在凹柱面上的反射,以a=(D-d)/2,f=D/4,P1/a=P0Fs/代入(1.54)式,取“一”得回波声压为上式说明内孔探伤圆柱体,其圆波声压大于同距离大平底回波声压,因为凹柱面反射波聚焦。以上各种规则反射体的回波声压公式均未考虑介质衰减,如果考虑介质衰减,则有平底孔回波声压:
88、0; (2.42)长横孔回波声压:
89、; (2.43)短横孔回波声压: (2.44)球孔回波声压:
90、; (2.45)大平底与实心圆柱体回波声压:
91、 (2.46)空心圆柱体外圆探伤回波声压: (2.47)空心圆柱体内孔探伤回波声压:
92、;(2.48)式中 反射体至探头的距离,3N; Ff平底孔面积, lf短横孔长度; Df平底孔或长、短横孔或球孔的直径; D空心圆柱体外径; d空心圆柱体内径; a介质单程衰减系数,dB/mm。 第五节AVG曲线 AVG曲线是描述规则反射体的距离、回波高及当量大小之间关系的曲线。A、V、G是德文距离、增益和大小的字头缩写。英文缩写为DGS。AVG曲线可用于对缺陷定量和灵敏度调整。AVG曲线有多种类型,据通用性分为通用AVG和实用AVG;据波型不同分为纵波AVG和横波AVG;据反射体不同分为
93、平底孔AVG和横孔AVG等。下面以纵波平底孔为例来说明AVG曲线的原理和绘制方法。一、纵波平底孔AVG曲线l.通用AVG 当x3N,不考虑介质衰减时,大平底面与平底孔回波声压为 当仪器的垂直线性良好时,示波屏上波高与声压成正比。
94、; 为了简化计算,对上式进行归一化处理。若用dB表示相对波高,则有 式中 A归一化距离; G归一化缺陷当量大小; V1底波与始波
95、高dB差; V2平底孔回波与始波高dB差。以横坐标表示lgA,纵坐标表示V1、V2,由公式(2.49)式得大平底面回波高与距离之间的关系曲线,如图2.24中B曲线。由公式(2.50)式得一簇不同G值的平底孔回波高与距离之间的关系曲线,如图2.24中的其他曲线。图中V均为负dB值,说明各底波与平底孔回波均比始波低,需要增益相应dB值,才能达到与始波等高。在A<3的区域内,由于理论公式不适用,因此该区域的曲线一般不绘出或由实测得到。由图2.24所示的平底孔缺陷通用AVG曲线可见,当A<1时,由于波的干涉,使平底孔回波声压趋于复杂化,出现极大极小值。但对于大平底而
96、言,其回波几乎不随距离变化,在这个区域内的入射波可视为平面波的一部分,平均声压为常数。通用AVG曲线由于采用了归一化距离和归一化缺陷当量大小,因此通用性好,适用不同规格的探头。通用AVG曲线可以用来调整探伤灵敏度和对缺陷进行定量,下面举例说明之。例如,用2.5MHz,20mm直探头探测厚为400mm钢制饼形锻件,已知钢中CL=5900m/s。探伤中在170mm处发现一缺陷,其回波比底波低10dB。(1)如何利用底波调整2平底孔灵敏度?(2)求此缺陷的当量平底孔尺寸为多少?解:(1)调灵敏度求N 求A和G
97、60; 查AVG曲线如图2.24所示,过A=9.4处作垂线交G=0.l线于N,交B线于M,则MN所对应的分贝值为400ram处大平底与2平底孔的回波分贝差: =B一2=44dB调整2灵敏度(衰减器)衰减50dB,调(增益使第一次底波B1达基准波高,然后去掉44dB,衰减器保留6dB,至此2灵敏度调好,即这时400ram处2平底孔回波正好达基准波高。(2)对缺陷定量求Af
98、 求Gf如图2.24所示,过Af=4作垂线与过比M点低10dB的P点所作的水平线相交于Q点,则Q点对应的G值为所求:Gf=O.3。求缺陷的当量尺寸 Df=GfD=0.3×20=6(mm)由以上例子看到,通用AVG曲线虽然通用性较好,但使用中要进行归一化换算,不大方便,为此引入了适用于特定探头的专用AVG曲线,常称实用AVG曲线。2.实用AVG曲线以横坐标表示实际声程,纵坐标表示规则反射体相对波高,用来描述距离、波幅、当量大小之间的关系曲线,称
99、为实用AVG曲线,如图2.25所示。 实用AVG曲线可由以下公式得到。不同距离的太平底回波dB差 (2.51)不同距离的不同大小平底孔回波dB差 &
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大数据中心机房建设工程合同
- 2024年广告媒体采购发布合同
- 2024城市公园环境卫生承包协议
- 2024年工程贷款协议模板助力项目发展
- 2024年危险品运输合同范本
- 2024年应急通信系统设备采购及安装合同
- 2024年工程质量检测居间合同
- 2024年双方共同投资建立教育咨询公司的合同
- 挑食偏食课件教学课件
- 2024婚姻关系解除后债务清偿合同
- 河北省石家庄市长安区2023-2024学年五年级上学期期中英语试卷
- 品牌经理招聘笔试题及解答(某大型国企)2025年
- 多能互补规划
- 珍爱生命主题班会
- 《网络数据安全管理条例》课件
- 消除“艾梅乙”医疗歧视-从我做起
- 第7课《回忆我的母亲》课件-2024-2025学年统编版语文八年级上册
- 八年级历史上册(部编版)第六单元中华民族的抗日战争(大单元教学设计)
- 公司研发项目审核管理制度
- 《诗意的色彩》课件 2024-2025学年人美版(2024)初中美术七年级上册
- 小学生主题班会《追梦奥运+做大家少年》(课件)
评论
0/150
提交评论