信号与系统知识要点_第1页
信号与系统知识要点_第2页
信号与系统知识要点_第3页
信号与系统知识要点_第4页
信号与系统知识要点_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、信号与系统知识要点第一章 信号与系统1、 周期信号的判断 (1)连续信号 思路:两个周期信号和的周期分别为和,如果为有理数(不可约),则所其和信号为周期信号,且周期为和的最小公倍数,即。 (2)离散信号思路:离散余弦信号(或)不一定是周期的,当 为整数时,周期; 为有理数(不可约)时,周期; 为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。2、能量信号与功率信号的判断(1)定义 连续信号 离散信号信号能量: 信号功率: (2)判断方法能量信号: 功率信号: (3)一般规律一般周期信号为功率信号; 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;还有一些非周期信号,也是

2、非能量信号。例如:(t)是功率信号; t(t)为非功率非能量信号;3、典型信号 指数信号: , 0K 正弦信号: 抽样信号: 欧拉公式:4、信号的基本运算1) 两信号的相加和相乘2) 信号的时间变化 a) 反转: b) 平移: c) 尺度变换: 3) 信号的微分和积分 注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。正跳变对应着正冲激;负跳变对应着负冲激。5、阶跃函数和冲激函数(1)单位阶跃信号 是的跳变点。(2)单位冲激信号 定义: 性质:1)取样性 2)偶函数 3)尺度变换 4)微积分性质 (3)冲激偶 性质: (4)斜升函数 (5)门函数 6、系统的特性 (

3、重点:线性和时不变性的判断)(1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。当激励为时,系统的响应为。2)线性系统分解特性: 零输入线性零状态线性(2)时不变性 :当激励为时,响应为。(3)因果性(4)稳定性 (5)微、积分特性。第二章 连续系统的时域分析1、时域分析法(一般都可以通过复频域分析法求)零状态响应2、冲激响应与阶跃响应(1)定义:冲激响应:由单位冲激函数(t)所引起的零状态响应,记为h(t)。 阶跃响应:由单位阶跃函数(t)所引起的零状态响应,记为g(t)。(2)关系:3、卷积积分(1)定义 ( 两个因果信号的卷积,其积分限是从0到t )(2)计算:一般计算用拉普

4、拉斯变换;如果要计算某一个值,比如设,计算,用图示法。图示法可分解为四步:1)换元: t换为得 f1(), f2()2)反转平移:由f2()反转 f2(-) 右移t f2(t-)3)乘积: f1() f2(t-) 4)积分: 从-到对乘积项积分。(3)性质:a)代数律(交换律;结合律、分配律)b)c)卷积的微分与积分:设,则d)卷积结果函数定义域的确定设 的定义域为:,的定义域为:,那么的定义域为:第三章 离散系统的时域分析1、时域分析法全响应y(k)=自由响应yh(k)+强迫响应yp(k)全响应y(k)=零输入响应yzi(k)+零状态响应yzs(k) (一般都可以通过Z域分析法求)零状态响应

5、2、序列(k)和(k)(1) 单位(样值)序列(k)定义:取样性质: (2)单位阶跃序列(k) (3)(k)与(k)的关系 3、单位序列响应与阶跃响应(1)定义冲激响应:由单位冲激函数(k)所引起的零状态响应,记为h(k)。 阶跃响应:由单位阶跃函数(k)所引起的零状态响应,记为g(k)。(2)关系 (3)两个常用的求和公式 (k2k1 )3、卷积和(1)定义 (2)计算:竖乘法、图解法和z变换法。有限长序列的卷积和用竖乘法;其他情况下一般用z变换法计算,但如果只计算某一个值,比如设,计算,用图示法。图示法可分解为四步:1)换元:k换为 i得 f1(i)、 f2(i)2)反转平移:由f2(i)

6、反转 f2(-i)平移k f2(k-i)3)乘积:f1(i) f2(k-i) 4)求和: i 从-到对乘积项求和。(3)性质a)代数律(交换律;结合律、分配律)b)f(k)*(k) = f(k) , f(k)*(k k0) = f(k k0) f(k)*(k) =f1(k k1)* f2(k k2) = f1(k k1 k2)* f2(k)c)卷积和序列定义域的确定设的定义域为:,的定义域为:,那么 的定义域为:d)卷积结果函数元素个数的确定若,那么的元素个数为: 第四章 傅里叶变换和系统的频域分析1、 周期信号的傅里叶级数任一满足狄里赫利条件的周期信号(为其周期)可展开为傅里叶级数。(1)三

7、角函数形式的傅里叶级数 式中,为正整数。傅里叶系数:直流分量余弦分量的幅度正弦分量的幅度三角函数形式的傅里叶级数的另一种形式为(2)指数形式的傅里叶级数 式中,为从到的整数。傅里叶系数:(3)对称性利用周期信号的对称性可以简化傅里叶级数中系数的计算。从而可知周期信号所包含的频率成分。有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性。实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项。 实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项。 实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项。 2、周期信号的频谱(1)会画单边幅度谱、

8、相位谱和双边幅度谱、相位谱(2)从对周期矩形脉冲信号的分析可知:1) 信号的持续时间与频带宽度成反比;2) 周期T越大,谱线越密,离散频谱将变成连续频谱;3) 周期信号频谱的三大特点:离散性、谐波性、收敛性。(3)周期信号的功率 3、傅里叶变换(1)定义正变换:反变换:说明:频谱密度函数一般是复函数,可以写作。其中是的模,它代表信号中个频谱分量的相对大小,是的偶函数。是的相位函数,它表示信号中各频率分量之间的相位关系,是的奇函数。(2)常用变换对 (0) 4、傅里叶变换的性质1)线性 2)奇偶虚实性 若,则若是实偶函数,则,即为的实偶函数;若是实奇函数,则,即为的虚奇函数。3)对称性 4)尺度

9、变换 5)时移特性 6)频移特性 7)时域卷积 频域卷积 8)时域微分 时域积分 其中9)频域微分 频域积分 其中5、帕斯瓦尔定理(能量等式)6、周期信号的傅里叶变换或7、频域分析(1)对于LTI系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得。其方法为:1) 求激励f(t)的傅里叶变换F(jw)。2) 求频域系统函数H(jw)。3) 求零状态响应yzs(t)的傅里叶变换Yzs(jw),即Yzs(jw)= H(jw) F(jw)。4) 求零状态响应的时域解,即yzs(t)= F -1Yzs(jw)(2)无失真传输在时域中,无失真传输的条件是 在频域中,无失真传输系统的特性为 (3)理

10、想滤波器理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器。理想滤波器是非因果性的,物理上不可实现的。其频率响应为 wc称为截止角频率即的低频段内,传输信号无失真 。8、时域取样定理(1)为恢复原信号,必须满足两个条件:1)f(t)必须是带限信号;2)取样频率不能太低,必须fs2fm,或者说,取样间隔不能太大,必须Ts1/(2fm);否则将发生混叠。 (2)通常把最低允许的取样频率fs=2fm称为奈奎斯特(Nyquist)频率; 把最大允许的取样间隔Ts=1/(2fm)称为奈奎斯特间隔。第五章 连续系统的s域分析1、

11、拉氏变换(1)定义(单边)(2)收敛域使得拉氏变换存在的S平面上的取值范围称为拉氏变换的收敛域。1)是有限长时,收敛域为整个S平面;2)是右边信号时,收敛域为的右边区域;3)是左边信号时,收敛域为的左边区域;4)是双边信号时,收敛域为S平面上一条带状区域。说明:我们讨论单边拉氏变换,只要取得足够大总是满足绝对可积条件,因此一般不写收敛域。(3)常用变换对 ( a为任意常数) 2、拉普拉斯变换的性质 线性: 尺度变换: 时移: 频移: 时域微分: 时域积分: 卷积定理: s域微、积分: 初、终值定理初值定理:设函数f(t)不含d(t)及其各阶导数(即F(s)为真分式,若F(s)为假分式化为真分式

12、)终值定理:若f(t)当t 时存在,并且 , Res>s0, s0<0,则 说明:(1)一般规律:有t相乘时,用频域微分性质; 有实指数相乘时,用频移性质; 分段直线组成的波形,用时域微分性质; 周期信号,只要求出第一周期的拉氏变换,(2)由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理。3、拉普拉斯逆变换(部分分式展开法)(1)单实根 (2)共轭单根 (系数求法同上) 若 ,则或(3)重根(重点:二重) 4、s域分析(1)微分方程的拉普拉斯变换分析当线性时不变系统用线性常系数微分方程描述时,可对方程两边取拉氏变换,并代入初始条件,从而将时域方程转化

13、为S域代数方程,求出响应的象函数,再对其求逆变换得到系统的响应。(2)系统的零状态响应 其中,是冲激响应的象函数,称为系统函数。系统函数定义为: (3)系统的S域框图(4)动态电路的S域模型:由时域电路模型能正确画出S域电路模型,是用拉普拉斯变换分析电路的基础。引入复频域阻抗后,电路定律的复频域形式与其相量形式相似。第六章 离散系统的z域分析1、z变换(1)定义 称为序列f(k)的双边z变换 称为序列f(k)的单边z变换(2)收敛域 序列的收敛域大致有一下几种情况:1)对于有限长的序列,其双边z变换在整个平面;2)对因果序列,其z变换的收敛域为某个圆外区域;3)对反因果序列,其z变换的收敛域为

14、某个圆内区域;4)对双边序列,其z变换的收敛域为环状区域; (3)常用变换对 (a为任意常数) ,全z平面 (a为任意常数)2、z变换的性质(1)线性: (2)移序:双边单边(3)z域尺度变换: (4)卷积定理: (5)域微分特性: (6)域微分特性:(7)k域反转 :(仅适用双边z变换) (8)部分和:(9)初、终值定理:(适用于右边序列)5逆Z变换(部分分式法)。系数求法同拉普拉斯逆变换。6 Z域分析1)差分方程的变换解 2)系统函数 3)系统的z域框图第七章 系统函数1、系统函数的零、极点分布图2、系统函数H(·)与时域响应h(·) (1)连续因果系统 H(s)在左半

15、平面的极点,它们对应的时域函数都是按指数规律衰减的。 H(s)在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数。 H(s)在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的。(2)离散因果系统 H(z)在单位圆内的极点所对应的响应序列为衰减的。即当k时,响应均趋于0。 H(z)在单位圆上的一阶极点所对应的响应函数为稳态响应。 H(z)在单位圆上的高阶极点或单位圆外的极点,其所对应的响应序列都是递增的。即当k时,响应均趋于。 3、系统函数与频率响应 若系统函数H(s)的极点均在左半平面,则它在虚轴上(s=j)也收敛,有H(j)=H(s)|s= j 4、系统的因果性(判定)(1)连续系统冲激响应 h(t)=0,t<0;或者,系统函数H(s)的收敛域为:Res>0 (2)离散系统单位响应 h(k)=0, k<0;或者,系统函数H(z)的收敛域为:|z|>0 5、系统的稳定性(判定)(1)连续系统:收敛域包含虚轴(2)离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论