2020年配电网低压问题的分析和设计精编版_第1页
2020年配电网低压问题的分析和设计精编版_第2页
2020年配电网低压问题的分析和设计精编版_第3页
2020年配电网低压问题的分析和设计精编版_第4页
2020年配电网低压问题的分析和设计精编版_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选文档配电网低电压问题的分析和设计综述一、区域配电网概率潮流计算1.1 配电网潮流计算研究的目的及意义由于我国经济的飞速发展以及人民生活水平的不断提高, 电力的供应和需求 已遍及到社会生产、 人民生活的各个层面, 社会对电力的需求量在日益增加。 同 时,产业结构的调整, 电力市场的逐步形成以及电价机制的完善, 也对电网的经 济性和可靠性提出了更高的要求。在现代电力系统中,大型的发电厂通常远离负荷中心,发电厂输送的电能, 一般要通过高压或超高压输电网络送到负荷中心, 然后在负荷中心由电压等级较 低的网络把电能分送到不同电压等级的用户。 这种在电力网中主要起分配电能作 用的网络称为配电网络。 配

2、电网按所在的地域或服务对象划分, 由城市配电网和 农村配电网两部分组成。 向一个城市及其郊区分配和供应电能的电力网叫城市配 电网。城市配电网连同为其提供电源的输电线路及变电所,统称为城市电力网, 简称城网。供应县 (县级市 )范围内的农村、乡镇、县城用电的电力网,叫做农村 配电网,简称农网。配电网按电压等级分,有高压配电网(35-110KV)中压配电网(6-10KV和低压配电网(220-380V)。城网可分为220KV的配电网,35KV的高压 配电网,10KV中压配电网和380/220V低压配电网。城市配电网是城市现代化建设的重要基础设施之一, 是现代化城市必不可少 的电能供应系统。 其建设的

3、好坏直接影响到城市经济的发展的快慢、 人民生活水 平的提高、投资环境的优化等。当前,国家对电力系统改革工作非常重视,在电 力工业中引入竞争机制, 并且开展电力市场建设。 对配电网问题进行研究, 大幅 度提高供电质量和可靠性, 对提高电力公司的经济效益与竞争力、 降低电网电能 精选文档精选文档损耗、节约能源具有重大的现实意义。随着我国经济的全面发展, 中低压配电网供电可靠性低、 发展落后的问题日 渐突出。城市中低压配电网在城市电力销售中占据了大部分市场, 但其发展滞后, 不再适应城市的需求, 因此成为客户抱怨的主要对象。 这些问题主要表现为: 一 是电网停电次数太多;二是停电时间长;三是报装时间

4、长;四是电压不稳定。为了解决以上的配电网问题,必然要求及时、准确的配电网潮流分析结果, 当然这就需要更加高效、可靠的潮流计算、分析方法。配电网络常规潮流计算的是根据已知的网络结构及运行条件, 求出整个网络 的运行状态, 其中包括各母线的电压、 网络中的功率分布及功率损耗等等。 潮流 计算是电力系统分析中最基本的重要的计算, 是电力系统运行、规划以及安全性、 可靠性分析和优化的基础,也是各种电磁暂态和机电暂态分析的基础和出发点。 随着系统网络结构日趋复杂和完善, 潮流计算作为电力网络分析的基本计算之一, 也在不断的得到改进和提高。但是,由于确定性潮流计算在反映配电网运行时的波动情况时存在着缺陷

5、, 引入了概率潮流计算理论进行配电网潮流分析。 目前我国配电网自动化程度不高 量测装置配置不足 ,导致概率潮流计算时能获得的负荷数据严重不足。针对确定 性潮流计算不能对整个配电网做出较为准确和全面的评判以及配电网中测量数 据不足问题提出了一种基于伪测量数据获取的非全测量信息配电网概率潮流算 法 ,该算法利用配电网中有限的实测量数据 ,采用某种负荷分配算法来估算伪测量 数据 ;并基于各个节点负荷相互独立,负荷功率分布呈正态分布的假设 ,根据辐射 型配电网的特点 ,提出了适合辐射型配电网的线性化概率潮流算法 ,得到了配网各 节点电压的概率特性。最后通过计算实例验证了算法的有效性与正确性。1.2 非

6、全测量信息配电网概率潮流算法配电网潮流计算的大问题就是测量数据不足 ,它影响潮流计算的精确度 ,需要 解决的问题就是非全测量信息问题。 运用概率统计方法处理系统运行中的随机变 化因素 ,通过给定节点注入功率、网络结构等数据的概率特性 ,可以计算求得所需 节点电压和支路功率等数据的概率特性。在低压配电网中,我们利用非全测量信息的配网概率潮流计算,是针对配电 网测量数据不足,采用一种合理的负荷分配法得到负荷数据模型:利用已知的实测 量来估计伪测量,通过有限节点的测量数据,估算出各未知节点负荷功率的概率特 性。非全测量信息概率潮流计算,可以解决配电网测量数据不足问题,得到节点电 压和支路功率等概率特

7、性,可更深刻地揭示系统运行状况、存在问题与薄弱环节 为规划与运行决策提供更完整的信息。这种计算方法可以显著提高低压配电网潮 流计算效率。1.配电网概率潮流算法概率潮流计算包括简化潮流方程为线性关系和利用随机变量间的线性关系 进行卷积计算。概率潮流线性化模型有直流潮流、PQ分解潮流、交流潮流模型。 但这些模型都是针对输电网的,因配电网运行结构与输电网有很大不同,故配电网 概率潮流算法有其自身的特点。辐射型配电网中,线路相邻两节点的等值电路图见图1。JJ+I111ph片图1线路相邻两节点的等值电路图从图1得到线路相邻两节点的功率与节点电压关系:P'jj = Pj + 1, j + i+ P

8、 j + 1=P j + 1, j + 1+ R + 1 ( Pj +1, j + 1 +&j +1, j + 1)/ V2j + 1 , Q'= Q + 1, j + 1 + Qj + 1 = Q +1, j + 1 +Xj + 1 ( K +1, j + 1+ tfj + 1, j + 1)/ V2j + 1 , ( j = 0, 1,2,n)。 其中:P j + 1, j + 1 = Pj + 1, j + 1 + P + 1(P + 1为节点j + 1的负荷有功功率)。上式是一个非线性方程,首先要将其线性忽略配网损耗占配网总功率的(1 3) %网络损耗P与Q。故各节点注

9、入功 率都是相互独立,数字特征为:e( Poo ) = e( P11 ) + e ( P2 ) + + e( Pn n ),e( Qoo ) = e( Q1 ) + e( Q22 ) + + e( Qn n ) ,(1)式中:e( x )表示x随机变量的数字特征;P 00 , Qoo根节点(0节点)总功率 由节点功率数字特征得节点电压数字特征。因配网供电半径小,电压在配网中各节点电压的幅值和相角与根节点相差很小。在计算配网中电压降时,可用额定电压幅值作为各节点电压幅值,且忽略电压降的虚部。图1的节点电压降如式 (2)。经过简化,电压降与节点功率也变成线性关系。V j + 1= ( Pj j R

10、 j + 什 Q 'X j + i) / V j + j ( P'jj Xj + 1- Q 'jjRj +1 ) / V j =( P'jj Rj + 1+ QjjXj + 1)/ V o , ( j = 0, 1 , 2 ,n)。(2)当已知节点负荷功率的数字特征时,可得到电压降的数字特征。如式(3):e( V j ) ( e ( Pjj) R+ 1 + e( Qj) X j + 1 ) / V n ,(3)故相邻两节点电压的数字特征为:e( Vj + 1 )= e( Vj ) - e( V j + 1)。(4)假设在实际运行中,根节点(0节点)的电压是恒定不

11、便的,即数学期望为恒定 值,方差为0。当已知根节点功率的概率特性时,从根节点往末梢节点推算,由(1)(4) 式可处出各节点电压的概率特性。2.非全测量信息中伪测量的估计配网中安装有自动测量功率表计的负荷节点,叫实测点,无实测功率值,估算 得到数据的点,叫伪测点。采用伪测量估计,相对于利用全面的负荷监控系统得到 测量数据的潮流计算,误差较大。曾采用一种粗糙的实时负荷数据模型,将变电站 出线实时功率量测按馈线上的变压器额定容量成比例地分配到馈线上各负荷节 点作为负荷伪测量。实际上配变负荷并非与配变的额定容量成严格的比例,与实际负荷有较大的误差。文献采用了一种改进算法,利用用户的用电信息,将各节点负

12、荷分类,对每类负荷统计用电信息预测每类负荷的当前日均用电需求量,且统计每类负荷的日变化曲线,得反映负荷日变化的分类负荷曲线,将二者结合作为负荷 分配的依据。但因一个配网上的负荷极其众多,且很高是人工抄表,整理抄表数据 工作量大,故本文采用简化方法,利用配变容量分配,考虑各配变负荷率的不同,其 他实测点及网络有功损耗。该分配方案,能得到较为合理的极限潮流,在应用于配 网规划时,能达到较高的可靠度。如下式:P$= (Po-洛Pm -丿仏叮心/(v T辛+占 F3k+其中:Po:根节点有功测量值;Pm:实测点节点m的有功测量值;Pjj:伪测点节点i 的负荷有功估计值(属第j类负荷,j=1,2,3,4

13、;i=1,2,3,n-M);Pl°s6所在配网的有功损 耗,取一个估计值,约为总功率的(13)%;T:节点i配变额定容量(属于第j类负荷);Kj: 第j类负荷变压器的负荷率。民用负荷,心取0.26;城市公用负荷,念取0.32;企业 负荷,二班制Kc3取0.55,三班制Kc4取0.89;M:根节点除外的其它实测点的个数;N: 伪测点配变总台数。各伪测点的有功率估算出来以后,再根据负荷各自的功率因数(cos ),估算它 们的无功功率。根据全国供用电规则,负荷类型的不同,取不同的(cos )。负 荷节点的测量值,通过离散随机变量分布来模拟。在长期的配网运行实践中,可归纳出负荷功率的概率特征

14、,近似符合正态分布。故只需求各随机变量的均值和方 差。3算例湖北襄樊市樊广二回线(部分),如图所示,箭头下方表示的是负荷变压器的额 定容量(kVAK只有节点0与节点11有测量值,配网结构参数如附录所示。2003.3-10 测得的数据为例,有功功率5min测一个值,一天288个测量值。利用负荷分配算法, 得到每个采用时刻各为测点负荷有功功率值,得到各伪测点的期望值与方差。根 据各节点功率的概率特性及根节点电压,算出各节点电压的期望值与方差(取 SB=100MVA,VB=10kV节点 0 电压为恒定值 10.5kV)。斗4123站04iS6I 7lg h h h °)20 180 100

15、 tc11r hhhh7裁严5050P> 100->515樊广二回线(部分)接线末梢节点8在满足配网电压要求的范围内的概率是 84.13%节点11满足要求 的概率是74.16%。从本算例结果可以看见,相对与确定性潮流只能给出某个特定条件下的配 网潮流,概率潮流能更为清晰地描述配电网的运行状况,具有明显的优越性。精选文档精选文档1.3结论随机潮流计算运用了概率统计法处理各种随机变化因素 ,给出系统各节点电 压、支路潮流的概率分布情况,可更深刻地揭示运行状况、存在问题与薄弱环节, 能为规划与运行决策提供更全面完整的信息,应用于配电网的安全指标、配电网 络重构、配网电压与无功控制、配电网

16、络静态安全分析等许多方面。 本章节提出 的非全测量信息配电网的概率潮流算法,经过在实际配网中的应用验证切实可行 的。这种潮流算法也为低电压问题的分析和解决提供了重要的数据支持。二、区域配电网低电压分布概率计算可以看到,配电网低电压的发生对系统以及用户造成的危害是较大的,如果我们能较为准确的预测配电网低电压发生的概率的话,就能提早的做出反应,采取措施限制配电网低电压的发生。 在这里我们引入一个概念:配电网低电压脆弱 性综合指标。脆弱程度越高,越容易发生低电压故障,相反,脆弱程度越低,电 网可靠性越强,发生低电压故障的概率就越小。2.1孤立母线低电压风险分析2.1.1基于风险理论的孤立母线低电压脆

17、弱性评估风险理论在充分考虑系统中随机因素的基础上,将导致灾害风险发生的可能 性与灾害发生后的严重度相结合,对灾害风险进行评估。通常风险的定义为“反 映导致灾害的可能性和这种灾害的严重程度”,因此事故发生的可能性与事故后 果的严重性是风险的2个重要因素。据此可得风险指标为(1)式中:C为随机事故造成的后果;Xt为故障前运行状态;i为正常运行元件 集合;E为随机事故;P(E/Xt)为Xt下随机事故E的概率;S(C/E为随机事故E导 致的严重度。用定量风险指标衡量母线节点的脆弱性, 风险值大,则对应的母线节点较脆 精选文档精选文档弱;反之,则较坚强。风险是安全性和经济性、局部和整体、时间点和时间段之

18、 间的桥梁。计算风险指标需计算事故可能性和严重度这 2个参数。电网的事故主要有短 路和断线。由统计数据和参考文献可得电网事故的概率基本服从泊松分布, 发生 k次E事故的概率为 (2)式中丫为一定时间段发生事故次数的数学期望。在不考虑过电压的影响下,可设母线电压大于电压额定值时的低电压严重度为0。根据行业规定的电压畸变率,一般认为,在系统电压等于0.95 pu时,可定义低电压的严重度为1,而小于0.95 pu时严重度大于1。电网事故的严重性还 与电网初始状态、运行条件、运行状况等有关。根据经验及资料,本文定义了母 线低电压的严重度函数S,如图1所示:哪 L0图i配电网母线低电压严重度函数Fi些

19、1 Low voltage severity function ofbus in distribution network风险评估法能定量抓住事故的可能性和严重性,沟通了经济性与安全性之间 的关系,克服了确定性分析法和概率性分析法的不足。孤立母线低电压风险指标 疋量表达式为Ry(C/JTt) = P(£/Xt)5v(C/ E) (3)式中:SV(C/E为事故导致某条母线的低电压严重度; RV(C/Xt为某事故下某条母 线的低电压风险值。2.1.2低电压风险指标计算流程风险指标计算过程中,首先设定预想故障集,计算预想故障集中每个事故发 生的概率,接着计算每个故障后电网的潮流分布情况,

20、潮流结果中节点电压小于 0.95 pu,则认为其存在低电压风险,计算节点电压低于 0.95 pu的母线低电压风 险指标。计算流程见图2。图2风险指标值计算流程Fig* 2 Risk index calculation process2.2 母线间脆弱性相互影响关系的定量计算2.2.1 评价算法层次分析法通过建立层次结构处理多指标问题, 其合理地将定性与定量决策 结合起来,按照思维、心理的规律将决策过程层次化、数量化。模糊综合评价是 对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法, 其特 点是评价结果不是绝对地肯定或否定, 而是以一个模糊集合来表示。 本文将层次 分析法和模糊综

21、合评价法相结合来评判母线间脆弱性影响。2.2.2 基于母线低电压脆弱性相互影响的指标选取要定量确定母线间低电压脆弱性相互影响的大小, 需找到一系列能精确反映 母线间低电压脆弱性的影响指标,在指标的选取过程中要遵循科学性、实用性、 广泛性、预见性等原则。在以上原则的指导下,根据现场运行人员的经验总结, 选取了正常运行指标和非正常运行指标 2 类。正常运行指标集合为Ui=U11,U12,U13,U14=荷水平指标,负荷上升速率指标, 电压最大越下限指标,系统最大电压落差指标。正常运行时如果负荷增加过快或过多会使电压急剧降低。 如果电压超过最大 下限还没有采取措施会使电压崩溃。 电网无功对电压稳定起

22、主导作用, 如果无功 规划不合理,会导致较大的电压落差, 该情况下如果出现扰动则会导致电压崩溃。非正常运行指标集合为 U2=U21,U22,U23=开断瞬间突变电压指标,开断后出 现的总体无功不平衡量指标,开断后出现的最大区域无功不平衡量指标。配电网故障时可计算得到故障区域内的最低电压值, 该值对低电压脆弱性评估具有重 要意义。故障后如果系统无功不平衡量缺乏严重,会对电压稳定造成严重影响。 区域无功不平衡能比较敏感地反映电网电压的薄弱环节, 为此该指标对母线脆弱 性相互影响的意义重大。223模糊层次分析法相结合求母线脆弱性相互影响系数配电网母线互相影响的低电压指标体系见图3配电网母线间影响指标

23、体系茱节点低电压对相邻节点的影响指标正常运行指标非正常运行指标1负荷 水平负荷上升速率指标人越下 限指标系缺落能开断瞬间 突变遊开断后出 现的总体 切不平 衡呈指标开断后出现 的最人区域 无功不平衡 最指标Fig. 3 Index system of influence between buses indistribution network本文评语集合V=v1,v2,v3, v1为重度影响,v2为轻度影响,v3为无影响。确定各评价因素集合Uij对评语集V的关系矩阵Ri=(r,j)mxn,本文的各决策因素可组成以下模糊决策矩阵G r2切心与l哈环 r2 r22 62 42 r51 心2 

24、74;斤3 23 ©3如与3心与3式中rij为评价因素ui对评价等级Vj的隶属关系。已知母线重要程度的评价指标集合为U,记为U=U1,U2,Un,集合U中按各个指标Ui对设备重要性的影响程度不同赋予不同权重,形成评价指标的权重集合A, A为U上的模糊子集。/二(虫为4 = 1(5)j1由现场工作人员确定出一条母线的脆弱性对其相关母线脆弱性的影响程度, 在此基础上定义各个评价指标对各个评语的隶属度 R。第i个指标对各评语等级 的隶属度是评语集的模糊子集。多指标评价时,综合评价矩阵 R为k叮R =AiV名ua-*(6)* * *理岗_考虑评价指标的权重后,可得出运行人员对各条母线的评价矩

25、阵BoB = (片(7)式屮: 为合成运算符号;Bj为某运行人员将该母线脆弱性对另一母线脆弱 性影响程度评为j级的隶属度。按最大隶属度原则,若=max(%2,,盅)(8)则该母线的脆弱性对另一母线脆弱性的影响程度被评为c级,本文中将评语集合分为3级,B=B1,B2,B3 B1为重度影响,B2为轻度影响,B3为无影响。 一母线对另一母线的脆弱影响系数可用矩阵 B中的最大值所对应的系数Bc来表 示o2.3配电网低电压脆弱性综合指标由上文分析可知,配电网第i条母线的综合脆弱性值为R【i二尺+ Z叫几(9)式中:Ri为第i条母线风险评估所得到的脆弱性值;Rn为第n条母线风险评 估所得到的脆弱性值;wn

26、i为第n条母线脆弱性对第i条母线脆弱性的影响程度, 为第n条母线对应矩阵B中的最大值。对所有母线进行计算即可得到母线低电压脆弱度排序。 设定故障率单位时间精选文档精选文档为1 a,每次考虑单一线路的故障,不考虑 2条及以上线路同时故障的情况,即 求取1 a内每条线路发生1次故障的概率。根据风险评估流程计算孤立母线低电 压风险值,然后计算考虑母线脆弱性相互影响的影响系数,最后根据式 (9)得出 综合风险指标值。2.4 结论本算法与传统算法得到的结果相比高风险母线增多, 且对其他母线的低电压 风险值也预测更准确; 此外,本文算法将脆弱性指标值放大, 更利于运行人员区 分对待,重点实施安全监控。因此

27、,本文方法能够更准确地预测母线低电压脆弱程度, 调度人员可以提早 采取有效的措施保证配电网的安全经济运行,从而减少电网停电事故的发生。三、影响配电网节点电压质量因素分析电压是电能质量的重要指标之一。 电压合格率是评价电网电压质量、 生产调 度管理工作、 制订电网规划和技术改造计划的重要依据, 也是考核系统运行管理 水平的重要指标之一。为更好的理解电压质量这一概念 ,我们可以用一些具体的指标来衡量 ,具体如 谐波、闪变和三相不平衡度。低压质量的衡量目前还没有一个较为明确的标准 , 但IEC标准中对电压质量有着较为准确和常规的定义:“电压质量是指供电的设备 在正常工作的情况下不中断和不干扰用户使用

28、电力的物理特性” ,因此可以显而 易见的认识到 ,最严重的电压质量问题就是电压完全中断。也有一些文献中从反 面给出了比较直观的不合格电能质量定义 :“导致用户设备故障或不能正常工作 的电流、电压或频率偏差”。针对于这些不同的提法,IEEE第 22标准统筹委员会(电 能质量)和其他国际委员会推荐用以下的一些具体指标作为衡量电压质量的标准 : 断电、电压凹陷、电压凸起、瞬时脉冲、过电压、欠电压、谐波、间谐波、电压 切痕、三相不平衡度。配电网出现低压问题时会对系统造成损害, 如:(1)当电压下降到额定电压 的65%70%寸,无功静态稳定破坏,将发生电压崩溃,造成大面积停电事故。(2)发电机因运行电压

29、降低而减少它的有功功率及无功功率的输出,由于发电 精选文档精选文档机的定子电流与转子电流受到额定值限制, 因此发电机的有功出力及无功出力近 似与运行电压成正比关系。 (3)送变电设备因电压降低而减少它的输送能力, 同 样其额定电流受输电线截面、 变压器线圈容量的限制; 因此它的传输能力亦近似 与运行电压成正比, 而且往往低电压时, 更需多送无功功率, 这样就造成输送有 功功率的能力更小。例如,一台lOOOkVA变压器,额定电压运行时,功率因数为 0.9,满送;当电压下降 20%以后,功率因数只有 0.7;在额定电压时,输送有功 功率为900kW,当电压下降20%以后,它的有功输送能力只有 56

30、0kW降低了 340kW的出力,其传输能力只有原来的62%。(4)送变电设备因运行电压降低而 增加能耗。例如电压下降 20%,能耗增加 44%;再加上多送无功功率,功率因数 从 0.9 下降到 0.7,能损增加为 0.77:两者相加为 1.21,能耗增加了 121%。(5) 当电压下降过多时, 将烧毁用户电动机。由于电压降低 20%时,电动机的电磁转 矩将减少36%,电流将增加20%35%,温度上升1215度,此时一部分电动 机被烧毁; 而大部分电动机则拖不动负载而停车; 停车后不能起动, 其中有些己 损坏,经济损失惨重。(6)电源电压下降,引起电灯功率下降,光通量减小和照 度降低。例如电压降

31、低 10%时,白炽灯的照度减少 35%;日光灯照度减少 10%, 而且寿命降低;水银灯的照度减少 20%。如电压下降 20%,日光灯不能起动,电 视机屏幕图像也看不清楚了。3.1 频率偏移频率偏移是电力系统基波频率偏离额定频率的程度, 大容量负荷或发电机的 投切以及控制设备不完善都有可能导致频率偏移。 我国电力法规规定, 大容量电 力系统的频率偏移不得超过 土 0.2Hz系统频率的过大变动对用户和发电厂的不利影响主要有如下几个方面:(1)频率变化引起异步电动机转速变化, 导致纺织、 造纸等机械的产品质量 受到影响;( 2)功率降低,导致传动机械效率降低;( 3)系统频率降低引起异步电机和变压器

32、激磁电流增加, 所消耗的无功功率 增加,恶化了电力系统的电压水平;( 4)频率的变化还可能引起系统中滤波器的失谐和电容器组发出的无功功率变化。3.2 电压偏差电压偏差是指系统各处的电压偏离其额定值的百分比, 它是由于电网中用户 负荷的变化或电力系统运行方式的改变, 使加到用电设备的电压偏离网络的额定 电压。若偏差较大时,对用户的危害很大, 不仅影响用电设备的安全、 经济运行, 而且影响生产的产品产量与质量。对于配电网最广泛应用的电动机, 当电压低于额定电压时, 转距减小, 转速 下降,导致工厂产生次品、废品;电流增加,电机温升增加,线圈发热,加剧绝 缘老化,甚至烧坏。当电压高于额定电压时,转矩

33、增加,使联接轴和从动设备上 的加速力增加,引起设备的振动、损坏;起动电流增加、在供电线路上产生较大 的电压降,影响其它电气设备的运行。对于发电机而言, 电压偏差会引起无功电流的增大, 对发电机转子的去磁效 应增加,电压降低, 过度增大激磁电流使转子绕组的温升超过容许范围, 加速绝 缘老化,降低电机寿命,甚至烧坏。对照明灯具, 电压对灯的光通量输出和寿命的影响很大, 当加于灯泡的电压 低于额定电压时,发光效率会降低,人的工作环境恶化,视力减弱;当高于额定 电压时,灯泡寿命会减少、烧坏。3.3 波形失真波形失真即理想工频正弦波的稳态偏移, 常用其频谱含量来描述, 波形失真 主要包括直流偏移高次谐波

34、、 间谐波、陷波和噪声。 交流电网中如果存在直流成 分,则称为直流偏移。 直流偏移是由于地磁波产生的电磁干扰和电网中半整流设 备的存在,直流电流流过变压器会引起变压器的直流偏磁, 产生附加损耗; 直流 电流还会导致接地体或其它连接器的电化学腐蚀, 陷波是由于换流器换相而产生 的周期性电压干扰, 尽管可以利用傅里叶变换将陷波分解成一系列谐波, 但一般 将陷波单独处理。因为其谐波次数较高且幅值不大,用谐波测量设备很难表征。 噪声是指叠加在每相电压或电流、中性线或信号线上的,频率超过200HZ勺电气信号。电力电子设备、 电弧装置和电器设备的投切都会产生电磁噪声, 噪声会影 精选文档精选文档响微机和P

35、LC勺正常工作。谐波是供电系统基波频率整数倍频率的正弦电压或电流, 由于供电系统中大 量采用非线性电气设备,例如可硅控整流装置,电弧设备、电气化机车、变压器 等都是高次谐波勺电流源, 它们接入电网后, 将使系统母线电压畸变。 高次谐波 会使发电机端电压波形产生畸变, 从而降低供电电压质量。 谐波会引起供电线路 损耗增加,损坏电气设备、降低供电可靠性,还会干扰和破坏控制、 测量、保护、 通讯和家用电器勺正常工作,谐波还加快旋转电机、变压器、电容器、电缆等电 气元件中绝缘介质勺电离过程,使其发热绝缘老化,寿命降低。3.4 电压波动与闪变电压波动是指电压快速变动时其电压最大值和最小值之差相对于额定电

36、压 勺百分比, 即电压均方根值一系列勺变动或连续勺改变。 闪变即灯光照度不稳定 造成勺视感,是由波动负荷,如炼钢电弧炉、轧机、电弧焊机等引起勺,对于起 动电流大勺鼠笼型感应电动机和异步起动勺同步电机也会引起供电母线勺快速、 短时勺电压波动。 因为它们起动或电网恢复电压时勺自起动电流, 流经网络及变 压器,会使各元件产生附加勺电压损失。 急剧勺电压波动会引起同步电动机勺振 动,影响产品勺质量、产量,造成电子设备、测量仪器仪表无法准确、正常地工 作。电压闪变超过限度值使照明负荷无法正常工作,损害工作人员身体健康。3.5 电压暂降与电压中断电压暂降是因为电力系统故障或干扰造成用户电压短时间( 10m

37、s1min) 内下降到 90%勺额定值以下,然后又恢复到正常水平, 电压暂降后有一定勺残压, 电压中断是由于系统故障跳闸后造成用户电压完全丧失。雷击时造成勺绝缘子闪络或对地放电、 架空勺输配电线路勺瞬时故障、 大型 异步电动机全电压启动等情况都会引起不同程度勺电压暂降和电压中断。 电压暂 降与中断会造成用户生产停顿或次品率增加, 会造成计算机数据丢失, 造成欠压 继电器误动。交流接触器和中间继电器不能正常工作等不良影响。3.6 电磁暂态电磁暂态是指电力系统从一个稳定状态过渡至另一个稳定状态时, 电压或电 流数值的暂时性变化, 产生电磁暂态的主要原因有雷电波冲击和电力系统故障等。 电磁暂态可分为

38、冲击暂态和振荡暂态两类。冲击暂态的定义: 电压或电流在稳态下的突然的非工频变化, 变化是单方向 的,常用其上升和延迟时间来描述, 主要原因是闪电。 冲击暂态常常使设备因过 电压而损坏,还有可能激发电力系统的固有振荡而导致振荡暂态。振荡暂态的定义: 电压或电流在稳态下的突然的非工频变化, 其变化是双向 的,常用频谱成分(主导频率)、持续时间和幅值进行描述。根据其频谱范围, 振荡暂态可分为高频、中频和低频三种。高频振荡暂态的主导频率一般在0.55MHz之间,持续时间为几个它往往是由于当地冲击暂态所引起。中频振荡 暂态的主导频率和在5500KHZ之间,持续时间为几十个ms,背靠背电容器的充 电会产生

39、主导频率为几十KHZ勺振荡暂态,电缆的投切也会产生同样频率范围内 的振荡暂态,冲击暂态也会引起中频振荡暂态。主导频率低于5KHz持续时间在 0.350ms之间的暂态称为低频振荡暂态,低频振荡暂态在输电系统和配电系统 中经常遇到,电容器组的充电会产生主导频率在 300900Hz之间、峰值约为 2.0p.u.的低频振荡暂态,配电网中存在的主导频率低于 300Hz的低频振荡暂态, 主要同配电网中的铁磁谐振现象和变压器充电产生的励磁涌流有关。3.7 三相不平衡三相不平衡是由不平衡的相阻抗、 不平衡的负荷或两者的组合引起的。 由于 导线分布的不对称, 典型的非线性负载, 如铁道电力机车、 炼钢电弧炉都会

40、产生 严重的负序分量。负序和零序分量的存在会对电力设备的运行产生下列影响:(1)凸极式同步电机对负序分量存在很强的谐波变换效应,三相不平衡会 导致同步电机产生电力谐波,污染电力系统的运行环境;(2)负序电流流入同步电机或异步电机, 会使电机因产生附加损耗而过热, 产生附加转矩而降低使用效率;(3)对直流输电的换流器来说,三相不对称不仅会增加控制的困难,还会导致非特征谐波的产生;(4)零序电流的存在会对邻近的通信线路产生很强的干扰。3.8 变频调整装置大功率晶闸管交流调整装置由于技术经济上的优势, 正在取代传统的直流调 速装置。交流调速分为两大类,即交 -直-交变频器和交 -交变频器,交 -直-

41、交变频 器由整流器、中间滤波环节及逆变器三部分组成。 整流器为晶闸管三相桥式电路, 它的作用是将交流电变换为可调直流电。 逆变器也是晶闸管三相桥式电路, 它的 作用是将直流电变换调制为可调频率的交流电。 中间滤波环节由电容器或电抗器 组成,它的作用是对整流为直流后的电压或电流进行滤波,交-交变频器实质上是一套桥式无环流反并联的可逆整流装置。 装置中工作晶闸管的关断通过电源交 流电压的自然换相实现, 输出电压波形和触发装置的控制信号波形是一样的, 从 而实现变频。3.9 同步串级调速装置低同步串级调速主要用于绕线式异步电动机, 取代传统的转子回路中串电阻 的调速方法, 它是在转子回路中加一整流器

42、, 把转差功率变为直流功率, 再用逆 变器将其反馈电网,改变转差功率,即可实现调速。这种调速方式效率比较高、 损耗小、调速范围宽、性能好,但会在逆变器和定子回路中产生谐波电流。3.10 感应电动机感应电动机的定子和转子中的线槽会由于铁芯饱和而产生不规则的磁化电 流,从而在低压电网中产生间谐波。在电机正常转速下,其干扰频率在5002000Hz范围内,但电机起动时干扰频率范围更宽, 这种电动机当装载较长,低压 架空线末端时会使电网受到干扰,间谐波电压可以达到 1%,这么高的电压易引 起脉动控制接收机的异常。3.11 间谐波及其抑制间谐波的频率不是工频频率的整数倍, 间谐波是指非整数倍基波频率的谐波

43、, 这类谐波可以是离散频谱或连续频谱。 但其危害等同于整数次谐波电压, 其抑制 与消除却比整数次谐波困难得多, 间谐波电压是由较大的波动或冲击性非线性负 荷引起的。间谐波电压必须限制到足够低的水平:(1) 25Hz以下间谐波应限制到0.2%以下,以免引起灯光闪烁(闪变);( 2)对于音频脉冲控制的接收机,间谐波电压应限制到 0.5%以下,否则会 被干扰;(3)2.5KHz以下的间谐波电压应不超0.5%,否则会干扰电视机,且引起感 应式电动机噪声和振动,以及低频继电器的异常运行。(4)2.55KHZ的间谐波电压如超过0.3%,则会引起无线电收音机或其它音 频设备的噪声;(5)当有非线性负载时,频

44、率为f的间谐波会产生频率旁频带成分,这些旁 频的幅值可能和间谐波的幅值十分接近, 则对于闪变频带的幅值而言相当于扩展 到基波的 4倍,对于音频控制频率的幅值而言也扩展到同样倍数,因此间谐波的 影响将大为扩大。所有非线性的波动负荷(电弧炉、电焊机、晶闸管供电的轧机等等),各种 变频调速装置, 同步串级调速装置以及感应电动机等均为间谐波源, 因此间谐波 广泛存在于电力系统中。 电力系统中的间谐波电压会引起灯光闪烁, 使音频脉冲 控制的接收机、 电视机、无线电收音机产生噪声和振动; 引起低频继电器的异常 运行以及无源电力滤波器过流跳闸等问题。 因此间谐波电压应制定相关国家标准, 将其限制在足够低的水

45、平(一般为 0.2%以下)。供配电系统中电压偏移、 电压的波动与闪变、 高次谐波与间谐波、 电压暂降 与中断、电磁暂态、 波形失真等均是影响供电系统电能质量的重要因素, 其具体 的参数是衡量供配电系统电压质量的指标, 在实际系统运行中, 必须结合相关的 国家标准规定的限值, 采取切实可行而又经济合理的补偿抑制措施, 以消除这些 “污染”或“公害”,提高其电能质量,确保系统的安全、可靠和经济运行。四、配电网低电压问题治理方案设计通过已知数据对区域配电网进行概率潮流计算和低电压分布概率的分析, 我 们可以较为准确的估计配电网低电压脆弱性, 从而根据相应故障的发生概率制定 相应的治理方案, 这是从预

46、防的方面限制配电网低电压问题的发生。 而从第三章 影响电压质量的因素着手我们可以设定不同的治理方案来应对。 治理方案可以分 为三部分:影响个体治理方案、影响局部治理方案和影响整体治理方案。4.1 个体治理方案个体治理方案指的是从电网末端或者是用户侧施加管理措施和管理方案, 这 种治理方案可以对个体配电网低电压进行规范化治理。 个体治理方案有两种: 一 是利用分布式电源; 二是利用无功补偿装置。 其中,有代表性的就是利用分布式 电源治理方案,这也作为我们个体治理方案的重点进行研究。4.1.1 分布式电源的使用以及经济性分析尤其在配电网中, 多数工业、 商业用户和城市居民负荷具有很大的随机波动 性

47、,各种不确定因素所引起的负荷变化给配电网的规划设计和运行带来了巨大的 难度和挑战。 另一方面,随着用户对供电质量和安全可靠性要求的提高。 配电网 的供电质量问题也严重影响着重要用户供电安全。 为解决这些问题而大力改造和 新建配电网络在技术、 资金和效益上都存在相当的难度。 因此在欧洲等发达国家, 不仅有大容量分布式发电并入次输电网络, 而且中小容量分布式发电也开始大量 渗透入低压配电网。分布式能源可使用天然气、 煤层气等燃料, 也可以利用沼气、 焦炉煤气等废 气资源,甚至可利用风能、太阳能、水能等可再生资源。由于目前分布式能源项 目多建在城市,故大部分分布式能源的燃料多为天然气或是柴油。4.1

48、.1.1 使用分布式电源的重要意义国外发达国家为推动分布式电源并网, 其研究集中在对系统的影响, 包括大 容量分布式发电并入次输电网络对大系统运行、 同步、稳定等方面的冲击和影响, 中小容量并入低压配电网对继电保护影响等方面,并取得了积极的结论和对策, 极大推动了分布式发电在这些国家的全面推广。 但是分布式发电对低压配电网用 户供电质量的影响一直受到忽视, 而提供给用户优质的电能是电力系统的最终目 的,因此分布式电源对用户供电质量的影响及如何通过分布式电源改善用户供电 质量同样是推动分布式发电发展的重要研究方向和关键课题。(1)经济性 由于分布式能源可用发电的余热来制热、制冷,因此能源得以合理

49、的梯 级 利用,从而可提高能源的利用效率 (达 70%.90%)。由于分布式电源的并网, 减 少 或缓建了大型发电厂和高压输电网, 缓建了电网而节约投资。 同时,使得输配电 网的潮流减少,相应的降低了网损。(2)环保性因其采用天然气做燃料或以氢气、太阳能、风能为能源,故可减 少有害物 的排放总量,减轻环保的压力:大量的就近供电减少了大容量远距离高 电压输 电线的建设,由此不但减少了高压输电线的电磁污染,也减少了高压输电 线的 征地面积和线路走廊,减少了对线路下树本的砍伐,有利于环保。(3)能源利用的多样性分布式发电可利用多种能源,如清洁能源 (天然气 )、 新能源(氢)和可再生能 源 (风能和

50、太阳能等 ),并同时为用户提供冷、热、电等多种能源应用方式,因此 是解决能源危机、提高能源利用效率和能源安全问题的一种很好的途径。(4)调峰作用 夏季和冬季往往是负荷的高峰时期,此时如采用以天然气为燃 料的燃气轮 机等冷、热、电三联供系统,不但可解决冬夏季的供冷与冬季的供热需要,同时 也提供了一部分电力,由此可对电网起到削峰填谷作用。此外,也部 分解决了 天然气供应时的峰谷差过大问题,发挥了天然气与电力的互补作用。(5) 安全性和可靠性 当大电网出现大面积停电事故时,具有特殊设计的分布 式发电系统仍能保 持正常运行,由此可提高供电的安全性和可靠性。(6) 电力市场问题分布式发电可以适应电力市场

51、发展的需要、由多家集资办 电,发挥电力建 设市场、电力供应市场的竞争机制。(7)投资风险投资风险分布式发电的装机容量一般较小,建设周期短,因此可避免类 似 大型发电站建设周期带来的投资风险。(8)边远地区的供电问题 我国许多边远及农村地区远离大电网,因此难以从 大电网向其供电。采用 太阳能光伏发电、风力发电和生物质能发电的独立发电系 统不失为一种优选的 方法。4.1.1.2 分布式电源对配电网的影响分布式电源的出现, 对传统的辐射状的配电网提出了很大的挑战, 它将给配 电网带来一系列的问题,包括:规划、潮流、控制、电能质量、可靠性、网损、 保护及自动化等。 分布式电源不同, 其与电网接入方式的

52、不同, 对电力系统的影 响都有所不同, 因此,研究分布式电源的分类及其特点, 因地制宜的选择分布式 电源类型,对研究含分布式电源配电网的稳定、经济运行有着至关重要的作用。 ( 1) 分布式电源对规划的影响由于分布式电源直接接入配电网的低压侧, 对周围的负荷提供了电能, 它们 的加入改变了整个配电网对外的负荷输出, 而这种输出跟分布式电源的投入和退 出有很大的关系, 分布式电源的随机性, 使得负荷的增长预测更难把握。 为了预 测这些不定因素。 规划人员应该对这些随机性带来的影响进行评估, 以寻求精确 的负荷预测方法。 于此同时寻找合适的优化方法, 才能给出分布式电源的优化配 置,包括分布式电源接

53、入的容量和位置, 这样才能保证含分布式电源的配电系统 安全,稳定,经济的运行,另外,国家能源政策、能源规划也直接影响电力系统 规划决策和过程。在规划前纳入政策对分布式电源支持的因素也是很有必要的。 规划含多种类型分布式电源的并网供电系统, 首先应该根据各种分布式电源特征 相应的建立模型, 其次应该在配电网中确定合理的电源接入结构, 并有效利用各 种电源,使其最大限度的发挥作用。精选文档精选文档配电系统电力系统是向用户分配电能的重要环节。 配网若发生故障, 可能会 直接导致用户的供电中断, 因此, 配电系统的重要性完全不亚于发电系统。 由于 配电系统一般是辐射式供电, 如果某一点发生故障, 有可

54、能大致部分线路甚至整 条线路的停电, 降低供电可靠性, 供电用户 80%以上的停电事故都是由于配电系 统的故障引起的。 因此,应该对配电系统可靠性进行研究, 才能让供电质量得到 保证。( 2) 分布式电源对电能质量、系统潮流影响 分布式电源接入配电网会改变原来配电网的单向潮流结构,这样的情况下, 潮流的大小方向都是无法预测的。 如果分布式电源的输出功率比负荷需求还要大 的时,这样某些段时或者全部潮流反向。 可以看到分布式电源的安装位置和融入 对潮流的改变有很大的影响。另外,分布式电源的接入会影响电压和频率, 如风力发电随风力的随机变化 还有分布式发电机启停,都会引起电压的波动、闪变、频率波动等

55、问题。 ( 3) 对系统运行可靠安全性影响分布式电源的接入改变了电网的结构, 短路电流也会因此受到改变, 原来网 架中的保护装置会因为潮流的改变和短路电流误动作, 降低了系统运行的安全稳 定性。特别是短路电流大于了系统的断路器中断容量时, 对设备非常不利, 可能 会被损坏。 因此,解决这个问题的方法是: 分布式电源并网运行时对其提供有效 的接地, 这样可以防止单相接地短路时, 非故障相出现过电压。 在这样的出力方 式下,如果接入分布式电源的电网与主网分离,还能继续向所在独立电网供电, 形成孤岛的形式。 这种突然形成的孤岛, 不仅对系统稳定性会造成影响, 引起谐 振过电压或者损坏设备, 还对维修

56、人员的人身安全会造成隐患, 系统受到干扰的 时候,大量渗入系统的分布式电源可能会增大转子、 转速的偏差, 导致振荡持续 时间延长。4.1.1.3 分布式电源接入标准理论分布式电源的出力会受到如风速、 太阳能辐照强度等不确定因素的影响, 这 些因素会对电网产生波动。这里参考风力发电和太阳能光伏发电并网接入 35kV 及以下电网时设定的国内外有关标准, 明确国内外标准对分布式电源发展的有关 精选文档精选文档要求。国外IEEE1547标准所示的区域电力系统示意图如 4.1所示。区域性电力系统图4.1 互联系统之间的关系示意图发电设备的有功和无功控制在并入电网时应符合规定范围,其电能质量满足 相关要求

57、。根据标准,并网模式时,从安全稳定的角度,分布式电源接入时,应 尽量少地对公共连接点PCC点的电能质量构成影响。国家电网公司对分布式电源 接入电网的技术规定,电源并网后能够有效的输送电能, 并能够让电网安全、稳 定的运行下去。4.1.1.4分布式电源经济性分析及优化配置的模型建立作为未来的电力重点发展对象,分布式电源还任重道远,由于传统的大电网 结构复杂,且技术上的成熟,使得短时间内分布式电源不能够代替传统电源。然后让分布式电源与大电网有机的集合在一起, 通过大电网来弥补分布式电源的缺 陷,又通过分布式电源弥补大电网的不足。但又能使其优势得以发挥。但是分布式电源的接入并不一定会是电网的有功损耗减小,有时候不当的接入位置反而会增加其网损。在电压方面,有时候过高的电压会超过正常的电压范 围。因此,分布式电源的合理配置,是非常必要的。分布式电源接入电网后必然会引起系统内潮流的变化, 这种变化时不可消除 的,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论