版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、尺规作图二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:过点×、点×作直线××;或作直线××;或作射线××;连结两点××;或连结××;延长××到点×;或延长(反向延长)××到点×,使××××;或延长××交××于点×;2.用圆规作图的几何语言:在××上截取××××
2、;;以点×为圆心,××的长为半径作圆(或弧);以点×为圆心,××的长为半径作弧,交××于点×;分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .五种基本作图:1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线;题目二:作已知线段的中点。已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:()分别
3、以M、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q;()连接PQ交MN于O则点O就是所求作的的中点。(试问:PQ与有何关系?)题目三:作已知角的角平分线。已知:如图,AOB,求作:射线OP, 使AOPBOP(即OP平分AOB)。作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、为圆心,大于的相同线段为半径画弧,两弧交AOB内于;(1) 作射线OP。则射线OP就是AOB的角平分线。初中尺规作图典型例题归纳典型例题三例 求作一个角等于已知角MON(如图1)图(1) 图(2)正解 如图(2),(1)作射线;(2)在图(1)上,以O为圆心,任意长为半径作弧,
4、交OM于点A,交ON于点B;(3)以为圆心,OA的长为半径作弧,交于点C;(4)以C为圆心,以AB的长为半径作弧,交前弧于点D;(5)过点D作射线则就是所要求作的角典型例题四例 如下图,已知及线段a,求作等腰三角形,使它的底角为,底边为a分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角B=C=,底边BC=a,故可以先作B=,或先作底边BC=a作法 如下图(1)MBN=;(2)在射线BM上截取BC=a;(3)以C为顶点作PCB=,射线CP交BN于点AABC就是所要求作的等腰三角形说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找
5、画图步骤典型例题八例 已知AOB,求作AOB的平分线OC错解 如图(1)作法 (1)以O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧相交于C点;(3)连结OC,则OC就是AOB的平分线错解分析 对角平分线的概念理解不够准确而致误作法(3)中连结OC,则OC是一条线段,而角平分线应是一条射线图(1) 图(2)正解 如图(2)(1)以点O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧交于C点;(3)作射线OC,则OC为AOB的平分线典型例题十例 如下图,已知线段a,
6、b,求作RtABC,使ACB=90°,BC=a,AC=b(用直尺和圆规作图,保留作图痕迹)分析 本题解答的关键在于作出ACB=90°,然后确定A、B两点的位置,作出ABC作法 如下图(1)作直线MN:(2)在MN上任取一点C,过点C作CEMN;(3)在CE上截取CA=b,在CM上截取CB=a;(4)连结AB,ABC就是所求作的直角三角形说明 利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序若把握不好作图顺序,要先画出假设图形典型例题十一例 如下图,已知钝角ABC,B是钝角求作:(1)BC边上的高;(2)BC边上的中线(写出作法,画出图形)分析 (1)作BC边上
7、的高,就是过已知点A作BC边所在直线的垂线;(2)作BC边上的中线,要先确定出BC边的中点,即作出BC边的垂直平分线作法 如下图(1)在直线CB外取一点P,使A、P在直线CB的两旁;以点A为圆心,AP为半径画弧,交直线CB于G、H两点;分别以G、H为圆心,以大于GH的长为半径画弧,两弧交于E点;作射线AE,交直线CB于D点,则线段AD就是所要求作的ABC中BC边上的高(2)分别以B、C为圆心,以大于BC的长为半径画弧,两弧分别交于M、N两点;作直线MN,交BC于点F;连结AF,则线段AF就是所要求作的ABC中边BC上的中线说明 在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线
8、、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点典型例题十二例 如图(1)所示,在图中作出点C,使得C是MON平分线上的点,且AC=OC图(1) 图(2)分析 由题意知,点C不仅要在MON的平分线上,且点C到O、A两点的距离要相等,所以点C应是MON的平分线与线段OA的垂直平分线的交点作法 如图(2)所示(1)作MON的平分线OP;(2)作线段OA的垂直平分线EF,交OP于点C,则点C就是所要求作的点说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等(2)两条直线交于一点典型例题十三例 如下图,已知线段a、b
9、、求作梯形ABCD,使AD=a,BC=b,ADBC,B=;C=分析 假定梯形已经作出,作AEDC交BC于E,则AE将梯形分割为两部分,一部分是ABE,另一部分是AECD在ABE中,已知B=,AEB=,BE=b-a,所以,可以首先把它作出来,而后作出AECD作法 如下图(1)作线段BC=b;(2)在BC上截取BE=b-a ;(3)分别以B、E为顶点,在BE同侧作EBA=,AEB=,BA、EA交于A;(4)以EA、EC为邻边作AECD四边形ABCD就是所求作的梯形说明 基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础因此,要作一个复杂的图形,常常先作一个比较容易作出的
10、三角形,然后以此为基础,再作出所求作的图形典型例题十五例 如图(1),已知有公共端点的线段AB、BC求作O,使它经过点A、B、C(要求:尺规作图,不写作法,保留作图痕迹)(2002年,大连)图(1) 图(2)分析 因为A、B、C三点在O上,所以OA=OB=OC=R根据到线段AB、BC各端点距离相等的点在线段的垂直平分线上,故分别作线段AB、BC垂直平分线即可解 如图(2)说明 角平分线的性质、线段垂直平分线的性质在作图题中的应用是近几年中考中的又一道风景,它往往与实际问题紧密联系在一起如图已知AOB,有两点M、N求作一点P,使点P在AOB两边距离相等,且到点M、N的距离也相等,保留作图痕迹并描
11、黑,完成填空解:(1)连接_;作_垂直平分线CD;(2)作AOB的_OE与CD交于点_,点_就是要找的点如图所示:(1)连接 MN;作 MN垂直平分线CD;(2)作AOB的 角平分线OE与CD交于点 P,点 P就是要找的点【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇、的距离必须相等,到两条高速公路、的距离也必须相等,发射塔应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点应满足两个条件,一是在线段的垂直平分线上;二是在两条公路夹角的平分线上,所以点应是它们的交点.【解析】 作两条公路夹角的平分线或;
12、作线段的垂直平分线;则射线,与直线的交点,就是发射塔的位置.【例2】 在平面直角坐标系中,点的坐标是,是坐标原点,在直线上求一点,使是等腰三角形,这样的点有几个?【解析】 首先要清楚点需满足两个条件,一是点在上;二是必须是等腰三角形.其次,寻找点要分情况讨论,也就是当时,以点为圆心,为半径画圆,与直线有两个点、;当时,以点为圆心,为半径画圆,与直线无交点;当时,作的垂直平分线,与直线有一交点,所以总计这样的点有3个.【例3】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为.可算出其内接正方形边长为,也就是说用这个长度去等分圆周.我们的任务就是做出这个长度.六等分圆周时会出现一个的长度.设法构造斜边为,一直角边为的直角三角形,的长度自然就出来了.【解析】 具体做法: 随便画一个圆.设半径为1. 先六等分圆周.这时隔了一个等分点的两个等分点距离为. 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【名师一号】2022届高三数学一轮总复习基础练习:第九章-算法初步、统计与统计案例9-1-
- 【创新设计】2021高考化学总复习(江西版)作业本:热点回头专练4-以框图推断为背景的无机综合应用题
- 《ADDA转换-概述》课件
- 六年级下册英语第一单元单词
- 【名师一号】2020-2021学年高中地湘教版必修1-双基限时练11
- 【高考复习方案】2022年高考数学(理)复习一轮作业手册:第54讲-直线与圆锥曲线的位置关系-
- 二年级数学(上)计算题专项练习汇编
- 四年级数学(小数加减运算)计算题专项练习与答案
- 2022年高考化学专题
- 【全程复习方略】2020年高考化学课时提能演练(二)-1.2-氯及其化合物(鲁科版-福建专供)
- 开荒保洁物业管理开荒保洁服务实施方案
- 48贵州省贵阳市2023-2024学年五年级上学期期末数学试卷
- GA/T 2015-2023芬太尼类药物专用智能柜通用技术规范
- 新华DCS软件2.0版使用教程-文档资料
- 住所的承诺书范文
- 售前解决方案部门管理规章制度
- 幼儿园游戏活动材料投放与指导课件
- 《城市道路工程设计规范》宣贯
- 电力工程管理培训课件
- 志愿服务证明(多模板)
- 颂钵培训课件
评论
0/150
提交评论