版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、analyzing the impact of granularity on ip-to-as mappingpresented by baobao zhangauthours:baobao zhang, jun bi, yangyang wang, jianping wu1 introductionndoing?nmap the ip address to the as that uses the ipnmeaningnhelp network managers diagnose network failurendiscover the as-level topology with trac
2、eroutensome other applications that need to map ip to asan example2 data collectionndata sourcentraceroute data (from caida)nbgp routing table (from routeviews)nprocessing into pairsnextract the prefixes and as paths from routing tablesnextract the destination ips and ip paths from traceroute datanf
3、ind the longest matching prefix for the destination ipnthe ip path associated with the destination ip and the as path associated with the longest prefix form one pairnorigin ip-to-as mappingnextract the prefixes and its origin ases from routing tablesnmap every prefix to its origin asdata collection
4、ndate: 04/22/2010nduring: one day3 methodologyndefinitionnexact matchnambiguous matchnmismatchnmethodsnprefix-granularity method (pgm)nip-granularity method (igm)nprefix-granularity limit method (pglm)nhierarchical mapping system (hms)nassumptionnthe traceroute path is consistent with the bgp as pat
5、h.methodsnprefix-granularity method (pgm)ni.e. maos methodnbind many ip addresses into one prefixnmap one prefix to many ases by setting thresholdntight couplingnprosncan modify the incorrect mappings for the ips that dont appear in the training dataset nconsnmistakenly modify the originally correct
6、 mappings for the ips that dont appear in the training dataset. (tight coupling)nthreshold. miss to modify the incorrect mappings for the ips that appear in the training datasetnthreshold. bring about ambiguous mappingsmethodsnip-granularity method (igm)nwe propose it for the first timenmap one ip t
7、o one only asnloose couplingnprosneliminate the ambiguous mappingsnconsnonly can modify the mappings for the ips that appear in the training dataset.methodsnprefix-granularity limit method (pglm)none fictitious methodnthe limit of pgm. set the threshold =0nit is only used to be comparedmethodsnhiera
8、rchical mapping system (hms)ncombine the igm with pgmnthree levels (/32 level, /24 level, origin level)nfirstly look up in the /32 level mapping, then /24 level mapping, finally the origin level mappingnprosncomplement the strength of tight coupling and loose coupling nconsn * inherit the characteri
9、stic of ambiguity from pgm4 evaluationndatasetevaluationntraining accuracyevaluationnvalidation accuracyevaluationncompare trained mapping with the origin mappingevaluation5 classification tree analysisnmotivationnquantify the pros and cons for the igm and pgmnanalyze the obstacles in the way of imp
10、roving the accuracy for the igm and pgm nother potential findingsnconstructing classification treetable 7 the improvement gained by correcting the mapping of the types for the pgm vds1gainvds2gainvds3gainvds4gaintype10.00%0.00%0.00%0.00%type20.71%0.02%0.27%0.05%type314.25%8.47%8.15%10.30%type40.00%0
11、.00%0.00%0.00%type52.37%1.55%0.35%2.47%type60.00%0.00%0.00%0.00%type70.80%1.57%1.47%1.05%type8(base)-0.29%(5.66%)-0.64%(7.34%)-0.15%(6.79%)-0.33%(6.20%)type1-2(base)0.00%(1.06%)0.00%(0.61%)0.00%(0.58%)0.00%(1.92%)type2-20.36%0.06%1.01%0.25%type3-20.42%1.12%22.29%15.08%type4-20.00%0.00%0.00%0.00%type
12、5-20.45%0.17%0.25%3.30%type8-2(base)0.00%(2.93%)0.00%(2.38%)-0.03%(2.22%)-0.01%(0.15%)type-all19.85%12.87%35.18%32.94%5.1 quantify the pros and cons for the igm and pgmnpros and consn(+) modify the incorrect mappings for the ips that dont appear in the training dataset (type 8-2, 1-2 for pgm, nothin
13、g for igm)n(-) mistakenly modifies the originally correct mappings for the ips that dont appear in the training dataset. (type 2-2 for pgm , nothing for igm)n(-) miss to modify the incorrect mappings for the ips that appear in the training dataset (type3 for pgm and igm)nquantifyingnfor pgm, base(ty
14、pe8-2)+base(type1-2)-gain(type2-2) is positive. 3.63%, 2.93%, 1.79% and 1.81% npgm(gain(type3)-igm(gain(type3) . 14.00%, 8.38%, 7.94% and 9.81% nconclusionnthe igm is superior to the pgm5.2 analyze the obstacles in the way of improving the accuracy for the igm and pgmnigmntype 7. (ips do not appear
15、in the training dataset) npgmntype 3. (ips appear in the training dataset, but miss to modify due to the tight coupling)ntype 3-2. (ips do not appear in the training dataset) 5.3 other findingsnthe limit of validation accuracy1-gain(type2) -gain(type3)-gain(type5)nfor igm98.87%,97.96%,98.43% ,98.96% nfor pg
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管疾病的个体化风险评估与干预
- 心脑血管疾病预防:从干预到防控一体化
- 心脏移植供体分配的患者满意度关联分析
- 心脏微血管功能障碍的炎症反应的干预策略
- 心脏再生基因治疗的联合免疫调节策略
- 心肌微循环障碍与保护策略
- 心室重构的临床管理策略
- 心力衰竭康复的运动策略与安全性
- 微创手术POCD的炎症因子调控
- 循证医学PBL多学科病例的证据检索与评价策略
- 2026年云南中烟工业有限责任公司毕业生招聘(502人)备考笔试试题及答案解析
- 工业生产设备故障诊断技术
- 海南省政务信息化项目投资编制标准(试行)
- 2025年秋鲁教版(新教材)小学信息科技五年级上册期末模拟试卷(含答案)(共三套)
- 2023北京朝阳高一(上)期末英语试卷含答案
- 西农植物病理学课件
- 三级安全教育试题(公司级、部门级、班组级)真题题库
- 2025年超星尔雅学习通《法律与社会议题》考试备考题库及答案解析
- 西北政法大学介绍
- 2024山东交通学院辅导员招聘笔试真题及答案
- 太空交通管理规则-洞察及研究
评论
0/150
提交评论