版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、几何题的变式与发散原型题:ABC是等腰直角三角形,ACB90°,M,N为斜边AB上两点,如果MCN45°求证 AM2BN2MN2 变式:ABC是等腰直角三角形,ACB90°, M,N为斜边AB上两点,满足AM2BN2MN2求MCN的度数发散:如图,直线交坐标轴于A、B两点,E、F为直线AB上第一象限内的两个动点,EOF=45°.过B作BGAB,且BG=AE,连OG.(1)求证:AOEBOG;(2)求证:(3)如图,过E作EMOA于M,过F作FNOB于N,ME、NF交于点P,双曲线经过点P,求K.原型题:如图,ABC是等边三角形,作顶角BDC=120
2、76;的等腰BCD,MDN=60°求证:MN=BM+CN变式2:如图,ABC是等边三角形,边长为1,作顶角BDC=120°的等腰BCD,MDN=60°当点M、N在OA、AB上运动时,试问:AMN 的周长是否发生变化,若不变,请求出其值,若不变,请说明理由.变式1:已知四边形中,绕点旋转,它的两边分别交(或它们的延长线)于当绕点旋转到时(如图1),易证当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,又有怎样的数量关系?请写出你的猜想,不需证明(图1)(图2)(图3)变式2:将两块相同的直角三角板(ADBBDC30
3、76;)如图1摆放,再将另一个稍大些的同种直角三角板(RtBNM)绕B点旋转, BM交边AD交于点E,BN交边CD交于点F (1)如图2当三角板MBN绕B点旋转到AECF时,AECF EF (填“”,“=”或“”);图2 (2)如图3当三角板MBN绕B点旋转到AECF时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由 图3原型题:在正方形ABCD中,1=2求证:AE=FE 变式1:其它条件不变,如果点E为BC上任意一点,结论AE=EF仍然成立吗?变式2:其它条件不变,如果点E为BC延长线上任意一点,结论AE=EF仍然成立吗?.变式:(2010黄冈)(6分)如图,一个含45°
4、;的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EFAE交DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。 发散1:(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是DCP的平分线上一点若AMN=90°,求证:AM=MN下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明证明:在边AB上截取AE=MC,连ME正方形ABCD中,B=BCD=90°,AB=BCNMC=180°AMNAMB=180°BAMB=MAB图1=MAE本试卷由无锡市天一实验学校金杨
5、建录制 QQ:623300747转载请注明!(下面请你完成余下的证明过程)图2(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是ACP的平分线上一点,则当AMN=60°时,结论AM=MN是否还成立?请说明理由本试卷由无锡市天一实验学校金杨建录制 QQ:623300747转载请注明!(3)若将(1)中的“正方形ABCD”改为“正边形ABCDX”,请你作出猜想:当AMN=°时,结论AM=MN仍然成立(直接写出答案,不需要证明)发散2:如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作AEF = 90°,使
6、EF交矩形的外角平分线BF于点F,设C(m,n)(1)若m = n时,如图,求证:EF = AE;(2)若mn时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由xOEBAyCFxOEBAyCFxOEBAyCF(3)若m = tn(t1)时,试探究点E在边OB的何处时,使得EF =(t + 1)AE成立?并求出点E的坐标发散:已知P是正方形ABCD边BC上一点,PEAP,且PE=AP,连接AE、CE、AE交CD于F,(1)求ECF的度数。(2)连AC,求证:(3)若正方形的边长为4,CF=3,请直接写出CP的长为 。拓展:1如图,已知正方形A
7、BCD和正方形CEFG的顶点B、C、E在同一直线上,点H是BE上一点,且AHFH,连接AF交CD于点P,则以下结论:(1)AH=HF; (2)DAH=PHA;(3)APH=CPF; (4)HE=PH+PG。正确的有( )个。A1 B2 C3 D412题图2、如图,在正方形ABCD和CEFG中,E、G分别在BC、CD上,连接AF、BG,点H、P分别是AF、BG的中点,BH的延长线交AD于K,连接KG、HP。下列结论: AF=BE;BG=2HP;AK2+FG2=KG2;AK+FG=KG。中正确的是( )A、 B、 C、 D、ABCDQP原型题:已知Q是正方形ABCD中CD边上一点,P是BC边上一点
8、;(1) 若DAQ=PAQ,求证:AP=BP+QD;(2) 若AP=BP+QD,则DAQ=PAQ成立吗?为什么?BCNM图1AD变式1:如图,已知:正方形中,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点当绕点旋转到时,求证变式2:如图(7),正方形ABCD的边长为1,AB、AD上各有一点P、Q,如果APQ的周长为2,求PCQ的度数。N发散:已知:正方形中,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点当绕点旋转到时(如图1),易证(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明BBMBCNCNMCNM图1图2图3AAADDD(2)当绕点旋转到如图3
9、的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想拓展1:如图1,在正方形ABCD中,E是AB上的一点,F是AD延长线上的一点,且DF=BE,(1) 求证:CE=CF(2) 在图1中,若G在AD上,且GCE=450,则GE=BE+GD成立吗?为什么?(3) 根据你所学的知识,运用(1),(2)解答中积累的经验,完成下列各题: 如图2,在直角梯形ABCD中,ADBC(BCAD),B=90°,AB=BC=12,E是AB的中点,且DCE=450,求DE的长; 如图3,在ABC中,BAC=450,ADBC,BD=2,CD=3,则ABC的面积为 (直接写出结果,不需要写出计算过程)拓展2:如图,点B是反比例函数的图象上一点,BA轴于A,BC轴于C,且BA=BC;(1)试判断四边形OABC的形状并求B点坐标。(2)点D(4,0)是轴上一点,连接BD,问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 放射治疗护士协助放疗
- 体育休闲行业美工体育品牌广告休闲活动海报
- 房地产行业销售培训
- 产前检测室护理工作心得
- 幼儿园大班体育教案《转》含反思
- 第七次人口普查先进个人材料(15篇)
- 安全管理读后感范文6篇
- 2024年度消费金融贷款合同范本详解3篇
- 2024年房地产代理服务合同范本(含法律咨询)3篇
- 2024年供应链金融担保人反担保合同标准模板3篇
- 邓州市龙理乡第一初级中学-2025年春节寒假跨学科主题实践作业模板【课件】
- (新疆一模)2025届高三高考适应性检测分学科第一次模拟考试 生物试卷(含答案解析)
- 酒店宴会服务合同三篇
- 高一数学上学期期末模拟试卷03-【中职专用】2024-2025学年高一数学上学期(高教版2023基础模块)(解析版)
- 2024-2025学年上学期北京初中物理九年级期末培优试卷
- 2024卫星遥感应用服务平台建设与运营合同
- 2024年社区工作者考试必考1000题【历年真题】
- 2023-2024学年广东省深圳市福田区八年级(上)期末历史试卷
- 公司安全事故隐患内部举报、报告奖励制度
- 2024年WPS计算机二级考试题库350题(含答案)
- 冬季传染病预防-(课件)-小学主题班会课件
评论
0/150
提交评论