版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数练习(2) 姓名: 学校: 完成时间: 一选择题(共2小题)1(2013泰安模拟)如图,抛物线y=x2x与直线y=x2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B若使点P运动的总路径最短,则点P运动的总路径的长为()A B C D2(2012西湖区校级模拟)对于关于x的二次函数y=ax2(2a1)x1(a0),下列说法正确的有()无论a取何值,此二次函数图象与x轴必有两个交点; 无论a取何值,图象必过两定点,且两定点之间的距离为;当a0时,函数在x1时,y随x的增大而减小; 当a0时,函数图象截x轴所得的线段
2、长度必大于2A1个 B2个 C3个 D4个二填空题(共8小题)3(2015东至县一模)定义a,b,c为函数y=ax²+bx+c的特征数,下面给出特征数为2m,1m,1m的函数的一些结论:当m=3时,函数图象的顶点坐标是(,);当m0时,函数图象截x轴所得的线段长度大于;当m0时,函数在时,y随x的增大而减小;当m0时,函数图象经过x轴上一个定点其中正确的结论有(只需填写序号)4(2013石峰区模拟)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(xm)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为3,则点D的横坐标最大值为5(
3、2013金华模拟)如图,在平面直角坐标系中,抛物线的顶点为A,与x轴交于O,B两点,点P(m,0)是线段OB上一动点,过点P作y轴的平行线,交直线y=于点E,交抛物线于点F,以EF为一边,在EF的左侧作矩形EFGH若FG=,则当矩形EFGH与OAB重叠部分为轴对称图形时,m的取值范围为6(2011湖州)如图,已知抛物线y=x2+bx+c经过点(0,3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间你确定的b的值是7(2011浙江模拟)已知一直线过点(1,a)且与直线y=3x6平行,与二次函数y=ax2只有一个公共点,则a的值是8(2011西湖区校级模拟)如图所示,
4、将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CEEO|,再以CM、CO为边作矩形CMNO令m=,则m=;又若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,则抛物线与边AB的交点坐标是9(2010宣武区一模)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取一点A,过点A作AHx轴于点H在抛物线y=x2(x0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与AOH全等,则符合条件的点A的坐标是10(2007眉山)如图,已知等腰直角ABC的直角边长与正方形MNP
5、Q的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为三解答题(共11小题)11(2015大庆模拟)已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且SABM=3,求点M的坐标;(3)如图2,若点P在第一象限,且PA=PO,过点P作PDx轴于点D将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,
6、该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由12(2015濠江区一模)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3(1)求抛物线的解析式;(2)作RtOBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)在x轴上方的抛物线上,是否存在一点P,使四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由;在抛物线的对称轴上,是否存在上点Q,使得BEQ的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由13(2015营口模拟)如图,二次函数的图象经过点A(4,0),B(4,4),且与y轴交于点C(1)试求此二
7、次函数的解析式;(2)试证明:BAO=CAO(其中O是原点);(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图象及x轴于Q、H两点,试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由14(2014泰安)二次函数y=ax2+bx+c的图象经过点(1,4),且与直线y=x+1相交于A、B两点(如图),A点在y轴上,过点B作BCx轴,垂足为点C(3,0)(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NPx轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置
8、时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标15(2014兰州)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标16(2014贵阳)如图,经过点A(0,6)的抛物线y=x2+bx+c与x轴相交
9、于B(2,0),C两点(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在ABC内,求m的取值范围;(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围17(2014潍坊)如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上
10、方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标18(2014珠海)如图,矩形OABC的顶点A(2,0)、C(0,2)将矩形OABC绕点O逆时针旋转30°得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:;(2)如果四边形OHMN为平行四边形,求点D
11、的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设PQH的面积为s,当时,确定点Q的横坐标的取值范围19(2014本溪)如图,直线y=x4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当MBA+CBO=45°时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运
12、动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由20(2014杭州)复习课中,教师给出关于x的函数y=2kx2(4k+1)xk+1(k是实数)教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上学生思考后,黑板上出现了一些结论教师作为活动一员,又补充一些结论,并从中选出以下四条:存在函数,其图象经过(1,0)点;函数图象与坐标轴总有三个不同的交点;当x1时,不是y随x的增大而增大就是y随x的增大而减小;若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数教师:请你分别判断四条结论的真假,并给出理由最后简单写出解决问题时所用的数学方法21(2014宜昌)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0t4,以AB为边在第一象限内作正方形ABCD;过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省2024年高考历史压轴卷含解析
- 诚信考试与假期安全教育
- 2024茶叶加盟合同范本
- 金融风险管理培训课程
- 深圳大学《药物分析》2023-2024学年第一学期期末试卷
- 边沟劳务施工合同(2篇)
- 石方爆破开挖施工合同协议书
- 回风斜井巷修工程协议书(2篇)
- 军训总教官讲话稿范文(8篇)
- 仓储项目招投标关键点解析
- 旅游地理课件:旅游规划及旅游线路设计
- 河北省承德市各县区乡镇行政村村庄村名居民村民委员会明细
- 灾害现场检伤分类-课件
- (完整)E级GPS控制测量技术设计书
- 疗养院建筑设计规范(含条文说明)
- 初中数学“问题串”教学研究优秀获奖科研论文
- 小学语文人教二年级上册第三单元-《猜猜我有多爱你》整本书阅读教学设计表胡唯意
- 雪球结构定价与风险深度分析
- 大学教师课程教学质量奖评选办法
- 放射性物质危险品货物运输资格证考试与答案
- 中国惯性导航行业概览
评论
0/150
提交评论