人教版九年级上册数学第二十二章二次函数第2节二次函数与一元二次方程参考课件2共41张PPT_第1页
人教版九年级上册数学第二十二章二次函数第2节二次函数与一元二次方程参考课件2共41张PPT_第2页
人教版九年级上册数学第二十二章二次函数第2节二次函数与一元二次方程参考课件2共41张PPT_第3页
人教版九年级上册数学第二十二章二次函数第2节二次函数与一元二次方程参考课件2共41张PPT_第4页
人教版九年级上册数学第二十二章二次函数第2节二次函数与一元二次方程参考课件2共41张PPT_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.理解二次函数图像与理解二次函数图像与x轴的交点的个数的情况轴的交点的个数的情况3.会用一元二次方程解决二次函数图象与会用一元二次方程解决二次函数图象与x轴轴的交点问题的交点问题2.理解二次函数图像与一元二次方程的根的关理解二次函数图像与一元二次方程的根的关系系二次函数v定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数。v图象:是一条抛物线。v图象的特点:(1)有开口方向,开口大小。(2)有对称轴。(3)有顶点(最低点或最高点)。oxyoxy二次函数y=ax2的图象与二次函数y=ax2+k的图象的关系v二次函数y=ax2+k的图象可由二次函数y=ax2的

2、图象向上(或向下)平移得到:v当k0时,抛物线y=ax2向上平移k的绝对值个单位,得y=ax2+kv当k0时,抛物线y=ax2向下平移k的绝对值个单位,得y=ax2+ky=2x2y=2x2-2y=2x2+2二次函数y=ax2的图象与二次函数y=a(x-h) 2的图象的关系v二次函数y=a(x-h) 2的图象可由二次函数y=ax2的图象向左(或向右)平移得到:v当h0时,抛物线y=ax2向左平移h的绝对值个单位,得y=a(x-h) 2v当h0时,抛物线y=ax2向右平移h的绝对值个单位,得y=a(x-h) 2二次函数y=ax2的图象与二次函数y=a(x-h) 2+k的图象的关系v二次函数y=a(

3、x-h) 2+k的图象可由抛物线y=ax2向左(或向右)平移h的绝对值个单位,在向上(或向下)平移k的绝对值个单位而得到.在对称轴的右侧,即当x - 时, y随x的增大而增大。简记左减右增。抛物线有最低点,当x=- 时, y最小值=二次函数y=ax2+bx+c的性质v当a0时:抛物线开口向上。v对称轴是x=- ,顶点坐标是(- , ) v当a0时,在对称轴的左侧,即当x- 时,y随x的增大而减小; oxyb2a4a4ac-b24a4ac-b2b2ab2ab2ab2a 在对称轴的右侧,即当 x - 时,y随x的增大而减小。简记左增右减。抛物线有最高点,当x=- 时,y最大值=v当a 0时:抛物线

4、开口向下。v对称轴是x=- ,顶点坐标是(- , ) v在对称轴的左侧,即当x - 时,y随x的增大而增大; oxyb2ab2ab2ab2ab2a4a4ac-b24a4ac-b2引言引言 在现实生活中,我们常常会遇到与二次函数及其图象有关的问题。如:被抛射出去的物体沿抛物线轨道飞行;抛物线形拱桥的跨度、拱高的计算等利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,我将和同学们共同研究解决这些问题的方法,探寻其中的奥秘。复习复习.1、一元二次方程、一元二次方程ax2+bx+c=0的根的情的根的情况可由况可由 确定。确定。 0 0= 0= 0 0 0有两个不相等的实数根有两个不相

5、等的实数根有两个相等的实数根有两个相等的实数根没有实数根没有实数根b2- 4ac2、在式子、在式子h=50-20t2中,如果中,如果h=15,那么,那么 50-20t2= ,如果,如果h=20,那,那50-20t2= , 如果如果h=0,那,那50-20t2= 。如果要想求。如果要想求t的值,那么我的值,那么我 们可以求们可以求 的解。的解。15200方程问题问题1 1: :如图如图, ,以以 40 m /s40 m /s的速度将小球沿与地面成的速度将小球沿与地面成 3030度度角的方向击出时角的方向击出时, ,球的飞行路线是一条抛物线球的飞行路线是一条抛物线, ,如果不考虑如果不考虑空气阻力

6、空气阻力, ,球的飞行高度球的飞行高度 h (h (单位单位:m):m)与飞行时间与飞行时间 t (t (单单位位:s):s)之间具有关系之间具有关系: :h= 20 t h= 20 t 5 t 5 t2 2 考虑下列问题考虑下列问题: :(1)(1)球的飞行高度能否达到球的飞行高度能否达到 15 m ? 15 m ? 若能若能, ,需要多少时间需要多少时间? ?(2)(2)球的飞行高度能否达到球的飞行高度能否达到 20 m ? 20 m ? 若能若能, ,需要多少时间需要多少时间? ?(3)(3)球的飞行高度能否达到球的飞行高度能否达到 20.5 m ? 20.5 m ? 若能若能, ,需要

7、多少时间需要多少时间? ?(4)(4)球从球从 飞出到落地飞出到落地 要用多少时间要用多少时间 ? ?15= 20 t 5 t2h=0h t20= 20 t 5 t220.5= 20 t 5 t20= 20 t 5 t2解解:(:(1)解方程)解方程15=20t-5t2 即:即: t2-4t+3=0 t1=1,t2=3 当球飞行当球飞行1s和和3s时,它的高度为时,它的高度为15m。 (2)解方程)解方程20=20t-5t2 即:即: t2-4t+4=0 t1=t2=2 当球飞行当球飞行2s时,它的高度为时,它的高度为20m。 (3)解方程)解方程20.5=20t-5t2 即:即: t2-4t

8、+4.1=0 因为因为(-4)2-44.10,所以方程无解,所以方程无解, 球的飞行高度达不到球的飞行高度达不到20.5m。(4)解方程)解方程0=20t-5t2 即:即: t2-4t=0 t1=0,t2=4 球的飞行球的飞行0s和和4s时,它的高度为时,它的高度为0m。即。即 飞出到落地用了飞出到落地用了4s 。 你能结合图你能结合图形指出为什形指出为什么在两个时么在两个时间球的高度间球的高度为为15m吗?吗?那么为什么那么为什么只在一个时只在一个时间求得高度间求得高度为为20m呢?呢?那么为什么那么为什么两个时间球两个时间球的高度为零的高度为零呢?呢? 从上面我们看出,从上面我们看出, 对

9、于二次函数对于二次函数h= 20 t 5 t2中,已知中,已知h的值,求时间的值,求时间t?其实就是把函数值其实就是把函数值h h换成换成常数常数,求,求一元二次方程的解。一元二次方程的解。2205htt那么从上面,二次函数那么从上面,二次函数y=axy=ax2 2+bx+c+bx+c何时为何时为一元二次方程一元二次方程?它们的关系如何它们的关系如何?一般地,当一般地,当y取定值时,二次函数为一元取定值时,二次函数为一元二次方程。二次方程。如:如:y=5时,则时,则5=ax2+bx+c就就是一个一元二次方程。是一个一元二次方程。为一个常数为一个常数(定值)(定值)练习一:练习一:如图设水管如图

10、设水管ab的高出地面的高出地面2.5m,在,在b处有一自动旋处有一自动旋转的喷水头,转的喷水头,解:根据题意得解:根据题意得 = 0分析:根据图象可知,分析:根据图象可知,-1想一想,这一个旋转喷水想一想,这一个旋转喷水头,水流落地覆盖的最大头,水流落地覆盖的最大面积为多少呢?面积为多少呢?1、二次函数、二次函数y = x2+x-2 , y = x2 - 6x +9 , y = x2 x+ 1的图象如图所示。的图象如图所示。(1).每个图象与每个图象与x轴有几个交点?轴有几个交点?(2).一元二次方程一元二次方程? x2+x-2=0 , x2 - 6x +9=0有几个根有几个根? 验证一下一元

11、二次方程验证一下一元二次方程x2 x+ 1 =0有根吗有根吗?(3).二次函数二次函数y=ax2+bx+c的图象和的图象和x轴交点的坐标与轴交点的坐标与 一元二次方程一元二次方程ax2+bx+c=0的根有什么关系的根有什么关系?22yxx 269yxx21y xx 答:答:2个,个,1个,个,0个个2,2,.个根个相等的根 无实数根边观察边思考边观察边思考b2 4ac 0b2 4ac =0b2 4ac 0oxy2、二次函数、二次函数y=ax2+bx+c的图象和的图象和x轴交轴交点点,则则b2-4ac的情况如何。的情况如何。.二次函数与一元二次方程的关系(1)如果抛物线)如果抛物线y=ax2+b

12、x+c与与x轴有公共轴有公共点,公共点的横坐标是点,公共点的横坐标是x0,那么当那么当x=x0时,函时,函数值为数值为0,因此,因此x=x0就是方程就是方程y=ax2+bx+c的的一个根一个根(2)(2)二次函数二次函数y=axy=ax2 2+bx+c+bx+c的图象和的图象和x x轴交点轴交点 情况如何?(情况如何?(b b2 2-4ac-4ac如何)如何) b2 4ac 0b2 4ac= 0b2 4ac 0思考:若抛物线思考:若抛物线y=ax2+bx+c与与x轴有交点轴有交点,则则 b2-4ac .0(1)有两个交点)有两个交点(方程有两个不相等的实数根)(方程有两个不相等的实数根)(2)

13、有一个交点)有一个交点(方程有两个相等的实数根)(方程有两个相等的实数根)(3)没有交点)没有交点(方程没有实数根)(方程没有实数根) 1 2 3 例:利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)222yxx(-0.7,0)(2.7,0)解:作的 图象(右图),它与x轴的公共点的横坐标大约是 .所以方程 的实数根为222yxx2220 xx120 .7 ,2 .7xx 0.7,2.7我们还可以通过不断缩小根所在的范围估计一元二次方程的根。仔细阅读课本p19内容。1 2 3 x=2时,y0根在2到3之间1 2 3 2.5已知x=3,y0 x=2.5时,y0根在2.5到3之间1 2

14、 3 1 2 3 2.5已知x=2.5时,y0根在2.5到2.75之间2.75 重复上述步骤,我们逐步得到:这个根在2.625,2.75之间,在2.6875,2.75之间可以得到: 根所在的范围越来越小,根所在的范围的两端的值越来越接近根的值,因而可以作为根的近似值,例如,当要求根的近似值与根的准确值的差的绝对值小于0.1时,由于|2.6875-2.75|=0.06250,0,c0时时,图象与图象与x轴交点情况是轴交点情况是( )a.无交点无交点 b.只有一个交点只有一个交点 c.有两个交点有两个交点 d.不能确定不能确定cx1=0,x2=59.如图如图,抛物线抛物线y=ax2+bx+c的对称轴是直线的对称轴是直线 x=-1,由由图象知图象知,关于关于x的方程的方程ax2+bx+c=0的两个根分别是的两个根分别是x1=1.3 ,x2=10.已知抛物线已知抛物线y=kx2-7x-7的图象和的图象和x轴有交点,轴有交点,则则k的取值范围(的取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论