版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1众数中位数平均数众数中位数平均数一一 众数、中位数、平均数的概念众数、中位数、平均数的概念 中数中数:将一组数据按大小依次排列:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据中间两个数据的平均数)叫做这组数据的中位数的中位数 众数众数:在一组数据中,出现次数最:在一组数据中,出现次数最多的数据叫做这组数据的众数多的数据叫做这组数据的众数 众数、中位数、平均数都是描述一组众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛度
2、不同,其中以平均数的应用最为广泛.第1页/共16页平均数: 一组数据的算术平均数,即 x=)xxx(n1n21 练习练习: 在一次中学生田径运动会上,在一次中学生田径运动会上,参加男子跳高的参加男子跳高的17名运动员的成绩如下名运动员的成绩如下表所示:表所示:成绩成绩(单单位:位:米米)150160165170175180185190人数人数23234111分别求这些运动员成绩的众数,中位数与分别求这些运动员成绩的众数,中位数与平均数平均数 平均数平均数: 一组数据的算术平均数一组数据的算术平均数,即即 x=第2页/共16页解:在解:在17个数据中,个数据中,1.75出现了出现了4次,出现的次
3、,出现的次数最多,即这组数据的众数是次数最多,即这组数据的众数是1.75上面表里的上面表里的17个数据可看成是按从小到大个数据可看成是按从小到大的顺序排列的,其中第的顺序排列的,其中第9个数据个数据1.70是最中间的是最中间的一个数据,即这组数据的中位数是一个数据,即这组数据的中位数是1.70;这组数据的平均数是这组数据的平均数是答:答:17名运动员成绩的众数、中位数、平均数名运动员成绩的众数、中位数、平均数依次是依次是1.75(米)、(米)、1.70(米)、(米)、1.69(米)(米). 第3页/共16页 二二 、 众数、中位数、平均数众数、中位数、平均数与频率分布直方图的关系与频率分布直方
4、图的关系 1、众数在样本数据的频率分布直方图众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。中,就是最高矩形的中点的横坐标。 例如,在上一节调查的例如,在上一节调查的100位居民的月位居民的月均用水量的问题中,从这些样本数据的频均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众率分布直方图可以看出,月均用水量的众数是数是2.25t.如图所示:如图所示:第4页/共16页频率频率组距组距0.10.20.30.40.5O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)第5页/共16页 2、在样本中,有在样本中,有50的个体小于或等于的个
5、体小于或等于中位数,也有中位数,也有50的个体大于或等于中位的个体大于或等于中位数数,因此,在频率分布直方图中,中位数,因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由左边和右边的直方图的面积应该相等,由此可以估计中位数的值。下图中虚线代表此可以估计中位数的值。下图中虚线代表居民月均用水量的中位数的估计值,此数居民月均用水量的中位数的估计值,此数据值为据值为2.03t. 第6页/共16页频率频率组距组距0.10.20.30.40.5O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)第7页/共16页说明说明: 2.03这个中位数的估计值这个中位数的
6、估计值,与样本与样本的中位数值的中位数值2.0不一样不一样,这是因为样本数这是因为样本数据的频率分布直方图据的频率分布直方图,只是直观地表明只是直观地表明分布的形状分布的形状,但是从直方图本身得不出但是从直方图本身得不出原始的数据内容原始的数据内容,所以由频率分布直方所以由频率分布直方图得到的中位数估计值往往与样本的图得到的中位数估计值往往与样本的实际中位数值不一致实际中位数值不一致.第8页/共16页 3、平均数是频率分布直方图的平均数是频率分布直方图的“重心重心”.是直方图的平衡点是直方图的平衡点. n 个样本数据的平均个样本数据的平均数由公式数由公式:)xxx(n1n21X=给出给出.下图
7、显示了居民月均用水量的平下图显示了居民月均用水量的平均数均数: x=1.973第9页/共16页频率频率组距组距0.10.20.30.40.5O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)第10页/共16页三三 三种数字特征的优缺点三种数字特征的优缺点 1、众数体现了样本数据的最大集中、众数体现了样本数据的最大集中点,但它对其它数据信息的忽视使得无点,但它对其它数据信息的忽视使得无法客观地反映总体特征法客观地反映总体特征.如上例中众数是如上例中众数是2.25t,它告诉我们它告诉我们,月均用水量为月均用水量为2.25t的的居民数比月均用水量为其它数值的居民居民数比月
8、均用水量为其它数值的居民数多数多,但它并没有告诉我们多多少但它并没有告诉我们多多少.第11页/共16页 2、中位数是样本数据所占频率、中位数是样本数据所占频率的等分线,它不受少数几个极端值的的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点对极端值的不敏感有时也会成为缺点。如上例中假设有某一用户月均用水。如上例中假设有某一用户月均用水量为量为10t,那么它所占频率为,那么它所占频率为0.01,几几乎不影响中位数乎不影响中位数,但显然这一极端值是但显然这一极端值是不能忽视的。不能忽视的。第12页/共16页 3、由于平均
9、数与每一个样本的、由于平均数与每一个样本的数据有关,所以任何一个样本数据的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众改变都会引起平均数的改变,这是众数、中位数都不具有的性质。也正因数、中位数都不具有的性质。也正因如此如此 ,与众数、中位数比较起来,平,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计时端值的影响较大,使平均数在估计时可靠性降低。可靠性降低。 第13页/共16页 四四 众数、中位数、平均数众数、中位数、平均数的简单应用的简单应用例例 某工厂人员及工资构成如下:某工厂人员及工资构成如下:人员人员经理经理 管理人员管理人员 高级技工高级技工 工人工人学徒学徒 合计合计周工资周工资2200 250220200100人数人数16510123合计合计2200 150011002000 1006900(1)指出这个问题中周工资的众数、)指出这个问题中周工资的众数、中位数、平均数中位数、平均数(2)这个问题中,工资的平均数能客观)这个问题中,工资的平均数能客观地反映该厂的工资水平吗?为什么?地反映该厂的工资水平吗?为什么?第14页/共16页 分析分析:众数为:众数为200,中位数为,中位数为220
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电子合同法律效力认定及证据保全操作规程3篇
- 二零二五年度汽车销售与售后服务咨询合同2篇
- 二零二五年钢筋制作与安装劳动合同规范3篇
- 二零二五版企业品牌形象策划执行合同3篇
- 二零二五年度工伤事故赔偿协议及后续心理咨询服务合同6篇
- 二零二五年度电梯产品研发与创新基金投资合同3篇
- 二零二五年度蜜蜂养殖环境监测与改善合同2篇
- 小麦种子繁育生产合同(2篇)
- 二零二五年电子商务SET协议安全技术实施合同3篇
- 二零二五年智能工厂生产过程监控合同样本3篇
- 2024年采购代发货合作协议范本
- 2024年业绩换取股权的协议书模板
- 颞下颌关节疾病(口腔颌面外科学课件)
- 工业自动化设备维护保养指南
- 2024人教新版七年级上册英语单词英译汉默写表
- 《向心力》参考课件4
- 2024至2030年中国膨润土行业投资战略分析及发展前景研究报告
- 2024年深圳中考数学真题及答案
- 土方转运合同协议书
- Module 3 Unit 1 Point to the door(教学设计)-2024-2025学年外研版(三起)英语三年级上册
- 智能交通信号灯安装合同样本
评论
0/150
提交评论