版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、硅片制绒工艺硅片制绒工艺 zhejiang university 制备绒面的目的制备绒面的目的减少光的反射率,提高短路电流,以致提高光电转换效率陷光原理陷光原理当光入射到一定角度的斜面,光会反射到另一角度的斜面,形成二次或者多次吸收,从而增加吸收率绒面光学原理单晶制绒单晶制绒单晶制绒流程:预清洗+制绒预清洗目的: 通过预清洗去除硅片表面脏污,以及部分损伤层。机械损伤层(5-7微米)硅片单晶制绒单晶制绒预清洗方法: 1、10%NaOH,78oC,50sec; 2、 1000gNaOH,65-70oC(超声),3min;1000g Na2SiO3+4L IPA,65oC,2min。 2NaOH+S
2、i+H2O=Na2SiO3+2H2SiO32-+3H2O=H4SiO4+2OH-单晶制绒单晶制绒预清洗原理: 1、10%NaOH,78oC,50sec; 利用浓碱液在高温下对硅片进行快速腐蚀。损伤层存在时,采用上述工艺,硅片腐蚀速率可达5m/min;损伤去除完全后,硅片腐蚀速率约为1.2m/min。经腐蚀,硅片表面脏污及表面颗粒脱离硅片表面进入溶液,从而完成硅片的表面清洗。 经50sec腐蚀处理,硅片单面减薄量约3m。采用上述配比,不考虑损伤层影响,硅片不同晶面的腐蚀速率比为: (110): (100): (111)=25:15:1,硅片不会因各向异性产生预出绒,从而获得理想的预清洗结果。 缺
3、点:油污片处理困难,清洗后表面残留物去除困难。单晶制绒单晶制绒预清洗原理: 2、 1000gNaOH,65-70oC(超声),3min;1000g Na2SiO3+4L IPA,65oC,2min。 利用NaOH腐蚀配合超声对硅片表面颗粒进行去除; 通过SiO32-水解生成的H4SiO4(原硅酸),以及IPA对硅片表面有机物进行去除。单晶制绒单晶制绒单晶绒面: 绒面一般要求:制绒后,硅片表面无明显色差;绒面小而均匀。单晶绒面显微结构(左:金相显微镜;右:扫描电镜)单晶制绒单晶制绒制绒原理: 简言之,即利用硅在低浓度碱液中的各向异性腐蚀,即硅在(110)及(100)晶面的腐蚀速率远大于(111)
4、晶面的腐蚀速率。经一定时间腐蚀后,在(100)单晶硅片表面留下四个由(111)面组成的金字塔,即上图所示金字塔。 根据文献报道,在较低浓度下,硅片腐蚀速率差异最大可达V (110): V(100) : V(111) =400:200:1。 尽管NaOH(KOH),Na2SiO3,IPA(或乙醇)混合体系制绒在工业中的应用已有近二十年,但制绒过程中各向异性腐蚀以及绒面形成机理解释仍存争议,本文将列出部分机理解释。单晶制绒单晶制绒各向异性腐蚀机理: 1967年,Finne和Klein第一次提出了由OH-,H2O与硅反应的各向异性反应过程的氧化还原方程式:Si+2OH-+4H2OSi(OH)62-+
5、2H2; 1973年,Price提出硅的不同晶面的悬挂键密度可能在各项异性腐蚀中起主要作用; 1975年,Kendall提出湿法腐蚀过程中,(111)较(100)面易生长钝化层; 1985年,Palik提出硅的各向异性腐蚀与各晶面的激活能和背键结构两种因素相关,并提出SiO2(OH)22-是基本的反应产物;单晶制绒单晶制绒各向异性腐蚀机理: 1990年,Seidel提出了目前最具说服力的电化学模型,模型认为各向异性腐蚀是由硅表面的悬挂键密度和背键结构,能级不同而引起的; 1991年,Glembocki和Palik考虑水和作用提出了水和模型,即各向异性腐蚀由腐蚀剂中自由水和OH-同时参与反应;
6、最近,Elwenspolk等人试着用晶体生长理论来解释单晶硅的各向异性腐蚀,即不同晶向上的结位(kinksites)数目不同; 另一种晶体学理论则认为(111)面属于光滑表面,(100)面属于粗糙表面。单晶制绒单晶制绒各向异性腐蚀机理: Seidel电化学模型:单晶制绒单晶制绒绒面形成机理: A、金字塔从硅片缺陷处产生; B、缺陷和表面沾污造成金字塔形成; C、化学反应产生的硅水合物不易溶解,从而导致金字塔形成; D、异丙醇和硅酸钠是产生金字塔的原因。 硅对碱的择优腐蚀是金字塔形成的本质,缺陷、沾污、异丙醇及硅酸钠含量会影响金字塔的连续性及金字塔大小。单晶制绒单晶制绒绒面形成最终取决于两个因素
7、: 腐蚀速率及各向异性腐蚀速率快慢影响因子: 1、腐蚀液流至被腐蚀物表面的移动速率; 2、腐蚀液与被腐蚀物表面产生化学反应的反应速率; 3、生成物从被腐蚀物表面离开的速率。单晶制绒单晶制绒具体影响因子:NaOH浓度溶液温度异丙醇浓度制绒时间硅酸钠含量槽体密封程度、异丙醇挥发搅拌及鼓泡NaOH浓度对绒面形貌影响: NaOH对硅片反应速率有重要影响。制绒过程中,由于所用NaOH浓度均为低碱浓度,随NaOH浓度升高,硅片腐蚀速率相对上升。与此同时,随 NaOH浓度改变,硅片腐蚀各向异性因子也发生改变,因此, NaOH浓度对金字塔的角锥度也有重要影响。85oC,30min,IPA vol10%单晶制绒
8、单晶制绒NaOH浓度对绒面反射率影响: 0.130.140.150.16051015202530354045505560Concentration of NaOH (g/l)Average Reflectance单晶制绒单晶制绒单晶制绒单晶制绒温度影响: 温度过高,IPA挥发加剧,晶面择优性下降,绒面连续性降低;同时腐蚀速率过快,控制困难; 温度过低,腐蚀速率过慢,制绒周期延长; 制绒温度范围:75-90oC。IPA影响:1、降低硅片表面张力,减少气泡在硅片表面的粘附,使金字塔更加均匀一致;2、气泡直径、密度对绒面结构及腐蚀速率有重要影响。气泡大小及在硅片表面的停留时间,与溶液粘度、表面张力有
9、关,所以需要异丙醇来调节溶液粘滞特性。单晶制绒单晶制绒IPA影响: 除改善消泡及溶液粘度外,也有报道指出IPA将与腐蚀下的硅生成络合物而溶于溶液。单晶制绒单晶制绒时间影响: 制绒包括金字塔的行核及长大过程,因此制绒时间对绒面的形貌及硅片腐蚀量均有重要影响。1 min;5 min;10min;30min.单晶制绒单晶制绒时间影响: 经去除损伤层,硅片表面留下了许多浅的准方形腐蚀坑。1分钟后,金字塔如雨后春笋,零星的冒出了头;5分钟后,硅片表面基本被小金字塔覆盖,少数已开始长大。我们称绒面形成初期的这种变化为金字塔“成核”。10分钟后,密布的金字塔绒面已经形成,只是大小不均匀,反射率也降到了比较低
10、的水平。随时间延长,金字塔向外扩张兼并,体积逐渐膨胀,尺寸趋于均匀。随制绒时间进一步延长,绒面结构均匀性反而下降,如图e,f所示。 单晶制绒单晶制绒时间影响: e. 35min; f. 45min单晶制绒单晶制绒硅酸钠含量影响: 硅酸钠具体含量测量是没必要的,只要判定它的含量是否过量即可。实验用浓盐酸滴定,若滴定一段时间后出现少量絮状物,说明硅酸钠含量适中;若滴定开始就出现一团胶状固体且随滴定的进行变多,说明硅酸钠过量。 相对而言,制绒过程中,硅酸钠含量具有很宽的窗口。实验证实,初抛液硅酸钠含量不超过30wt%,制绒液硅酸钠含量不超过15wt%,均能获得效果良好的绒面。尽管如此,含量上限的确定
11、需根据实际生产确认。 单晶制绒单晶制绒槽体密封程度、异丙醇挥发: 槽体密封程度,异丙醇挥发对制绒槽内的溶液成分及温度分布有重要影响。 制绒槽密封程度差,导致溶液挥发加剧,溶液液位的及时恢复非常必要,否则制绒液浓度将会偏离实际设定值。异丙醇的挥发增加化学药品消耗量增加的同时,绒面显微结构也将因异丙醇含量改变发生相应变化。 单晶制绒单晶制绒搅拌及鼓泡: 搅拌及鼓泡有利于提高溶液均匀度,制绒过程中附加搅拌及鼓泡,硅片表面的气泡能得到很好的脱附,制绒后的硅片表面显微结构表现为绒面连续,金字塔大小均匀。 但搅拌及鼓泡会略加剧溶液的挥发,制绒过程硅片的腐蚀速率也略为加快。 单晶制绒单晶制绒小结: 单晶制绒
12、原理为硅的各向异性腐蚀。硅片的表面沾污,缺陷等对绒面形成有重要影响。 影响硅片腐蚀速率及绒面显微结构的因素众多,主要包括如下因子:NaOH浓度;溶液温度;异丙醇浓度;制绒时间;硅酸钠含量;槽体密封程度;异丙醇挥发;搅拌及鼓泡等。单晶制绒单晶制绒多晶制绒工艺: 由于多晶硅片由大小不一的多个晶粒组成,多晶面的共同存在导致多晶制绒不能采用单晶的各向异性碱腐蚀 (Orientation Dependent Etching)方法完成。 已有研究的多晶制绒工艺: 高浓度酸制绒;机械研磨;喷砂,线切;激光刻槽;金属催化多孔硅;等离子刻蚀等。 综合成本及最终效果,当前工业中主要使用的多晶制绒方法为高浓度酸制绒
13、。 多晶制绒多晶制绒多晶制绒工艺: 线上工艺: 均为HNO3,HF,DI Water 混合体系。常用的两个溶液配比大致如下: HNO3:HF:DI Water= 3:1:2.7; HNO3:HF:DI Water= 1:2.7:2 制绒温度6-10,制绒时间120-300sec。反应方程式:HNO3+Si=SiO2+NOx+H2O SiO2+6HF=H2SiF6+2H2O 多晶制绒多晶制绒多晶制绒工艺: 制绒原理: HNO3:HF:DI Water= 3:1:2.7 该配比制绒液与位错腐蚀Dash液的配比基本一致,反应原理也一致,即利用硅片在缺陷或损伤区更快的腐蚀速率来形成局部凹坑。同时,低温
14、反应气泡的吸附也是绒面形成的关键点。 由于Dash溶液进行缺陷显示时,反应速率很慢,因此,进行多晶制绒时,需提高硅片的腐蚀速率(通常通过降低溶液配比中水的含量完成)。多晶制绒多晶制绒多晶制绒多晶制绒多晶制绒工艺: 制绒原理: HNO3:HF:DI Water= 1:2.7:2 该配比制绒液利用硅片的染色腐蚀。染色腐蚀是指在电化学腐蚀过程中,硅片的反应速率受硅片基体载流子浓度影响很大。载流子浓度差异导致硅片腐蚀速率产生差异,从而形成腐蚀坑,完成硅片的 制绒。 相比上一配比,该配比下硅片腐蚀速率非常快,对制绒过程中温度要求进一步提高。同时,在该工艺下,硅片表面颜色将变得较深。多晶制绒工艺: 两种工
15、艺配比下的绒面照片: 配比1配比2多晶制绒多晶制绒新型制绒工艺: 新型制绒工艺: Rena浮法链式制绒(解决热排放问题);缓冲液调节制绒(控制自催化以及热量生成问题);放弃传统制绒体系衍生的新制绒体系。多晶制绒多晶制绒槽式多晶制绒: 槽式批量制绒方式比较适合单晶,但对多晶酸制绒,由于反应过程放热量很大,而多晶酸制绒又需要一个低的制绒温度,因此对设备的冷却系统以及溶液循环系统有很高的要求。多晶制绒多晶制绒槽式多晶制绒: 设备改进方向: 1、花篮齿间距尽量大,降低单批生产硅片数量; 2、大流量,强循环酸液致冷; 3、制绒过程中酸循环。 工艺改进方向: 1、降低制绒过程热积累; 2、防止硅片表面酸雾形成。拟采取的实验方向:添加缓冲剂进行多晶制绒。多晶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高职院校实习基地建设合同
- 标准房产交易预约合同格式
- 互联网技术服务合同范本
- 标准借贷协议格式
- 货运航线代理合同
- 怡佳仁食品盈利能力分析与评价案例10000字
- 外呼营销代理合作协议
- 美的集团公司高派现股利政策研究案例7000字
- 2024员工保密协议书样本
- 军人离婚协议书标准格式
- iso20000信息技术服务目录
- 齿轮减速器的结构认识及拆装
- 《农学蔬菜种植》ppt课件
- 小学二年级阅读练习(课堂PPT)
- GB31644-2018食品安全国家标准复合调味料
- 藏外佛教文献W06n0055 大黑天神道场仪
- 方格纸,申论答题卡A4打印模板
- 最新国际大型石油公司组织结构
- 第七章气相色谱法PPT课件
- 数据字典范例
- 正射数据处理操作步骤
评论
0/150
提交评论