步步高高中数学第三章3.3.3函数的最大小值与导数基础过关训练新人教A版选修11_第1页
步步高高中数学第三章3.3.3函数的最大小值与导数基础过关训练新人教A版选修11_第2页
步步高高中数学第三章3.3.3函数的最大小值与导数基础过关训练新人教A版选修11_第3页
步步高高中数学第三章3.3.3函数的最大小值与导数基础过关训练新人教A版选修11_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.3.3函数的最大(小)值与导数一、基础过关1.函数f(x)x24x7,在x3,5上的最大值和最小值分别是()a.f(2),f(3)b.f(3),f(5)c.f(2),f(5)d.f(5),f(3)2.f(x)x33x22在区间1,1上的最大值是()a.2b.0c.2d.43.函数y的最大值为()a.e1b.ec.e2d.4.函数y在定义域内()a.有最大值2,无最小值b.无最大值,有最小值2c.有最大值2,最小值2d.无最值5.已知函数yx22x3在区间a,2上的最大值为,则a等于()a.b.c.d.或6.函数f(x)xex的最小值为_.7.已知f(x)x2mx1在区间2,1上最大值就是函

2、数f(x)的极大值,则m的取值范围是_.二、能力提升8.设直线xt与函数f(x)x2,g(x)ln x的图象分别交于点m,n,则当|mn|达到最小时t的值为() a.1b.c.d.9.已知函数f(x)ex2xa有零点,则a的取值范围是_.10.已知函数f(x)2x36x2a在2,2上有最小值37,求a的值及f(x)在2,2上的最大值.11.已知函数f(x)x3ax2bxc(a,b,cr).(1)若函数f(x)在x1和x3处取得极值,试求a,b的值;(2)在(1)的条件下,当x2,6时,f(x)<2|c|恒成立,求c的取值范围.12.函数f(x)x3ax2b的图象在点p(1,0)处的切线与

3、直线3xy0平行.(1)求a,b;(2)求函数f(x)在0,t (t>0)内的最大值和最小值.三、探究与拓展13.已知函数f(x)(xk)ex.(1)求f(x)的单调区间;(2)求f(x)在区间0,1上的最小值.答案1.b2.c3.a4.c5.c6.7.4,2 8.d9.(,2ln 2210.解f(x)6x212x6x(x2),令f(x)0,得x0或x2,当x变化时,f(x),f(x)变化情况如下表:x2(2,0)0(0,2)2f(x)00f(x)40a极大值a8a当x2时,f(x)min40a37,得a3.当x0时,f(x)最大值为3.11.解(1)f(x)3x22axb,函数f(x)

4、在x1和x3处取得极值,1,3是方程3x22axb0的两根.,.(2)由(1)知f(x)x33x29xc, f(x)3x26x9.当x变化时,f(x),f(x)随x的变化如下表:x(,1)1(1,3)3(3,)f(x)00f(x)极大值c5极小值c27而f(2)c2,f(6)c54,当x2,6时,f(x)的最大值为c54,要使f(x)<2|c|恒成立,只要c54<2|c|即可,当c0时,c54<2c,c>54;当c<0时,c54<2c,c<18.c(,18)(54,),此即为参数c的取值范围.12.解(1)f(x)3x22ax,由已知条件即,解得.(2

5、)由(1)知f(x)x33x22,f(x)3x26x3x(x2).f(x)与f(x)随x变化情况如下:x(,0)0(0,2)2(2,)f(x)00f(x)22由f(x)f(0),解得x0,或x3.因此根据f(x)图象,当0<t2时,f(x)的最大值为f(0)2,最小值为f(t)t33t22;当2<t3时,f(x)的最大值为f(0)2,最小值为f(2)2;当t>3时,f(x)的最大值为f(t)t33t22,最小值为f(2)2.13.解(1)f(x)(xk1)ex.令f(x)0,得xk1, f(x)与f(x)的变化情况如下表:x(,k1)k1(k1,)f(x)0f(x)ek1所以f(x)的单调递减区间是(,k1);单调递增区间是(k1,).(2)当k10,即k1时,函数f(x)在0,1上单调递增,所以f(x)在区间0,1上的最小值为f(0)k;当0<k1<1,即1<k<2时,由(1)知f(x)在0,k1上单调递减,在(k1,1)上单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论