版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 初二数学因式分解辅导教案授课教师授课对象授课时间授课题目因式分解课 型使用教具教学目标 因式分解是初中代数中一种重要的恒等变形,是处理数学家问题重要的手段和工具,有关的题目在中考和数学竞赛中比较常见。对于特殊的因式分解,除了考虑提公因式法、公式法、分组分解法、十字相乘法等基本方法外,还应根据多项式的具体结构特征,灵活选用一些特殊的方法,这样不仅可使问题化难为易,化繁为简,使复杂问题迎刃而解,而且有助于培养同学们的探索求新的习惯,提高同学们的数学思维能力。现将因式分解中几种比较常用的方法与技巧列举如下,供同学们参考。教学重点和难点 通过具体的题目来复习相关内容参考教材八年级数学教参因式分解的常
2、用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1 )
3、(a+b)(a-b) = a2-b2 -a2-b2=(a+b)(a-b);(2 ) (a±b)2 = a2±2ab+b2 a2±2ab+b2=(a±b)2;(3 ) (a+b)(a2-ab+b2) =a3+b3- a3+b3=(a+b)(a2-ab+b2);(4 ) (a-b)(a2+ab+b2) = a3-b3 -a3-b3=(a-b)(a2+ab+b2)下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);例.已知是的三边,且
4、,则的形状是( )A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形解: 三、分组分解法.(一)分组后能直接提公因式例1、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。解:原式= = 每组之间还有公因式! = 例2、分解因式:解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。 第二、三项为一组。解:原式= 原式= = = = =练习:分解因式1、 2、(二)分组后能直接运用公式例3、分解因
5、式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式= = =例4、分解因式: 解:原式= = =练习:分解因式3、 4、综合练习:(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11)(12)四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式进行分解。特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。思考:十字相乘有什么基本规律?例.已知05,且为整数,若能用十字相乘法分解因式,求符合条件的.解析:凡是能十字相乘的二次三项 式ax2+bx+c
6、,都要求 >0而且是一个完全平方数。于是为完全平方数,例5、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5。 由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。 1 2解:= 1 3 = 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。例6、分解因式:解:原式= 1 -1 = 1 -6 (-1)+(-6)= -7练习5、分解因式(1) (2) (3)练习6、分解因式(1) (2) (3
7、)(二)二次项系数不为1的二次三项式条件:(1) (2) (3) 分解结果:=例7、分解因式:分析: 1 -2 3 -5 (-6)+(-5)= -11解:=练习7、分解因式:(1) (2) (3) (4)(三)二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。 1 8b 1 -16b 8b+(-16b)= -8b 解:= =练习8、分解因式(1)(2)(3)(四)二次项系数不为1的齐次多项式例9、 例10、 1 -2y 把看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3
8、解:原式= 解:原式=练习9、分解因式:(1) (2)综合练习10、(1) (2)(3) (4) (5) (6)(7) (8) (9) (10)思考:分解因式:五、换元法。例13、分解因式(1) (2)解:(1)设2005=,则原式= = =(2)型如的多项式,分解因式时可以把四个因式两两分组相乘。 原式=设,则原式= =练习13、分解因式(1)(2) (3)例14、分解因式(1)观察:此多项式的特点是关于的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。这种多项式属于“等距离多项式”。方法:提中间项的字母和它的次数,保留系数,然后再用换元法。解:原式=设,则原式= = = =(2)解:
9、原式= 设,则 原式= =练习14、(1) (2)六、添项、拆项、配方法。例15、分解因式(1) 解法1拆项。 解法2添项。原式= 原式= = = = = = =(2)解:原式=练习15、分解因式(1) (2)(3) (4)(5) (6)七、待定系数法。例16、分解因式分析:原式的前3项可以分为,则原多项式必定可分为解:设=对比左右两边相同项的系数可得,解得原式=例17、(1)当为何值时,多项式能分解因式,并分解此多项式。 (2)如果有两个因式为和,求的值。(1)分析:前两项可以分解为,故此多项式分解的形式必为解:设= 则=比较对应的系数可得:,解得:或当时,原多项式可以分解;当时,原式=;当
10、时,原式=(2)分析:是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如的一次二项式。解:设= 则= 解得,=21练习17、(1) (2)(3) 已知:能分解成两个一次因式之积,求常数并且分解因式。(4) 为何值时,能分解成两个一次因式的乘积,并分解此多项式。第二部分:习题大全经典一:一、填空题1. 把一个多项式化成几个整式的_的形式,叫做把这个多项式分解因式。2分解因式: m3-4m= .3.分解因式: x2-4y2= _ _.4、分解因式:=_ _。5.将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为 . 6、若,则=_,=_。二、选择题7、多项式
11、的公因式是( )A、 B、 C、 D、8、下列各式从左到右的变形中,是因式分解的是( )A、 B、C、 D、10.下列多项式能分解因式的是( )(A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+411把(xy)2(yx)分解因式为( )A(xy)(xy1) B(yx)(xy1)C(yx)(yx1) D(yx)(yx1)12下列各个分解因式中正确的是( )A10ab2c6ac22ac2ac(5b23c)B(ab)2(ba)2(ab)2(ab1)Cx(bca)y(abc)abc(bca)(xy1)D(a2b)(3ab)5(2ba)2(a2b)(11b2a)13.若k-12xy
12、+9x2是一个完全平方式,那么k应为( )A.2 B.4 C.2y2 D.4y2三、把下列各式分解因式: 14、 15、16、 17、 18、 19、; 五、解答题20、如图,在一块边长=6.67cm的正方形纸片中,挖去一个边长=3.33cm的正方形。求纸片剩余部分的面积。22、观察下列等式的规律,并根据这种规律写出第(5)个等式。经典二:因式分解小结知识总结归纳 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。 1. 因式分解的对象是多项式; 2. 因式分解的结果一定是整式乘积
13、的形式; 3. 分解因式,必须进行到每一个因式都不能再分解为止; 4. 公式中的字母可以表示单项式,也可以表示多项式; 5. 结果如有相同因式,应写成幂的形式; 6. 题目中没有指定数的范围,一般指在有理数范围内分解; 7. 因式分解的一般步骤是: (1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法; 下面我们一起来回顾本章所学的内容。 1. 通
14、过基本思路达到分解多项式的目的 例1. 分解因式 分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把,分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。 解一:原式 解二:原式= 2. 通过变形达到分解的目的 例1. 分解因式 19解一:将拆成,则有 解二:将常数拆成,则有 3. 在证明题中的应用 例:求证:多项式的值一定是非负数 分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。本题要证明这个多项式是非负数,需要变形成完全平方数。 证明: 设,则 4. 因式分解中的转化思想 例:分解因式: 分析:本题
15、若直接用公式法分解,过程很复杂,观察a+b,b+c与a+2b+c的关系,努力寻找一种代换的方法。 解:设a+b=A,b+c=B,a+2b+c=A+B 说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的。中考点拨 例1.在中,三边a,b,c满足 求证: 证明: 说明:此题是代数、几何的综合题,难度不大,学生应掌握这类题不能丢分。 例2. 已知:_ 解: 说明:利用等式化繁为易。题型展示 1. 若x为任意整数,求证:的值不大于100。 解: 说明:代数证明问题在初二是较为困难的问题。一个多项式的值不大于100,即要求它们的差小于零,把它们的差用因式分解等方法恒等变形成完全平方是一种常用
16、的方法。 2. 将 解: 说明:利用因式分解简化有理数的计算。实战模拟1. 分解因式: 2. 已知:的值。3. 矩形的周长是28cm,两边x,y使,求矩形的面积。 4. 求证:是6的倍数。(其中n为整数) 5. 已知:a、b、c是非零实数,且,求a+b+c的值。 6. 已知:a、b、c为三角形的三边,比较的大小。经典三:因式分解练习题精选一、填空:(30分)1、若是完全平方式,则的值等于_。2、则=_=_3、与的公因式是4、若=,则m=_,n=_。5、在多项式中,可以用平方差公式分解因式的有_ ,其结果是 _。6、若是完全平方式,则m=_。7、8、已知则9、若是完全平方式M=_。10、, 11、若是完全平方式,则k=_。12、若的值为0,则的值是_。13、若则=_。14、若则_。15、方程,的解是_。二、选择题:(10分)1、多项式的公因式是( )A、a、 B、 C、 D、2、若,则m,k的值分别是( )A、m=2,k=6,B、m=2,k=12,C、m=4,k=12、D m=4,k=12、3、下列名式:中能用平方差公式分解因式的有( )A、1个,B、2个,C、3个,D、4个4、计算的值是( ) A、 B、三、分解因式:(30分)1 、 2 、 3 、 4、 5、 6、7、 8、 9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论