2020年贵州省黔东南州中考数学试卷及答案_第1页
2020年贵州省黔东南州中考数学试卷及答案_第2页
2020年贵州省黔东南州中考数学试卷及答案_第3页
2020年贵州省黔东南州中考数学试卷及答案_第4页
2020年贵州省黔东南州中考数学试卷及答案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学试题2020年贵州省黔东南州中考数学试卷、选择题(每小题 4分,10个小题,共40分)1 . ( 4分)-2020的倒数是()2020年中考A . - 20202020C. 2020D.120202. (4分)下列运算正确的是()B. x3+x4= x7A . (x+y) 2=/+y2D. ( 3x) 2=9x2C. x3?x2=x63. (4分)实数2v10介于()C. 6和7之间D. 7和8之间4. (4分)已知关于x的一元二次方程 x2+5x- m= 0的一个根是2,则另一个根是(C. 3D. - 35. (4分)如图,将矩形 ABCD沿AC折叠,使点B落在点B'处,B&

2、#39; C交AD于点E,若C. 50°D. 606. (4分)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()(主视图)f左视图)A . 12 个B . 8 个C. 14 个D. 13 个7. (4分)如图,。的直径 CD = 20, AB是。的弦,ABXCD,垂足为 M,OM:OC=3:5,则AB的长为()A. 8B. 128. (4分)若菱形ABCD的一条对角线长为则该菱形ABCD的周长为()C. 16D. 2V9T8,边CD的长是方程x2- 10x+24= 0的一个根,B. 24C. 16 或 24D. 48

3、A作AC,y轴,垂足为69. (4分)如图,点 A是反比例函数 尸??(x>0)上的一点,过点点C,AC交反比例函数y= 2?勺图象于点B,点P是x轴上的动点,则4PAB的面积为(A . 2B. 4C. 6D. 810. (4分)如图,正方形 ABCD的边长为2,。为对角线的交点,点 E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧??再分另1J以E、F为圆心,1为半径作圆弧????则图中阴影部分的面积为()男 尸 QA.兀1B.兀2C.兀3D.4 兀二.填空题:(每小题3分,10个小题,共30分)11. (3 分)cos60° =12. (3分)2020年以来,新冠肺

4、炎横行,全球经济遭受巨大损失,人民生命安全受到巨大 威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 2.13. (3分)在头数氾围内分斛因式:xy - 4x=.5?- 1 >3(?+ 1)14. (3分)不等式组11的解集为 2?- 1 <4 3?15. (3分)把直线y=2x- 1向左平移1个单位长度,再向上平移 2个单位长度,则平移后所得直线的解析式为.216. (3分)抛物线y=ax+bx+c (aw0)的部分图象如图所不,其与x轴的一个交点坐标为(-3, 0),对称轴为x= - 1,则当y<0时,x的取值范围是 17. (3分)

5、以?ABCD对角线白交点 。为原点,平行于 BC边的直线为x轴,建立如图所示顺序,则出场顺序恰好是甲、乙、丙的概率是 19. (3分)如图,AB是半圆。的直径,AC=AD, OC = 2, Z CAB =30° ,则点。至U CD20. (3分)如图,矩形 ABCD中,AB=2, BC= v2, E为CD的中点,连接 AE、BD交于 点P,过点P作PQBC于点Q,则PQ =.三、解答题:(6个小题,共80分)21. (14 分)(1)计算:(;)2- |v2- 3|+2tan45° 一 ( 2020兀)0;(2)先化简,再求值:(/-a+1) +Y-4,其中a从T, 2,

6、3中取一个你认为 ?+1?+2?+1合适的数代入求值.22. (12分)某校对九年级学生进行一次综合文科中考模拟测试,成绩 x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用 A、B、C、D 表示),A 等级:90<x< 100, B 等级:80<x< 90, C 等级:60<x<80, D 等级:0Wxv 60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.徼频数(人数)频率Aa20%B1640%CbmD410%请你根据统计图表提供的信息解答下列问题:(1) 上表中的 a, b =, m=.(2)

7、本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.23. (12分)如图,AB是。的直径,点 C是。上一点(与点 A, B不重合),过点C作 直线 PQ,使得/ ACQ=/ABC.(1)求证:直线PQ是。的切线.(2)过点A作ADLPQ于点D,交。于点E,若。的半径为2, sin/DAC=g,求 图中阴影部分的面积.24. (14分)黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?

8、(2)设甲商品的销售单价为 x (单位:元/件),在销售过程中发现:当11WxW19时,甲商品的日销售量 y (单位:件)与销售单价 x之间存在一次函数关系,x、y之间的部 分数值对应关系如表:销售单价x (元/件)1119日销售量y (件)182请写出当11<x< 19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为 w元,当甲商品的销售单价 x(元/件)定为多少时,日销售利润最大?最大利润是多少?25. (14分)如图1, ABC和4DCE都是等边三角形.探究发现(1) ABCD与4ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)

9、若B、C、E三点不在一条直线上,/ ADC = 30° , AD = 3, CD = 2,求BD的长.(3)若B、C、E三点在一条直线上 (如图2),且 ABC和 DCE的边长分别为 1和2, 求4ACD的面积及AD的长.26. (14分)已知抛物线y=ax2+bx+c (aw0)与x轴交于A、B两点(点A在点B的左边), 与y轴交于点C (0, - 3),顶点D的坐标为(1 , - 4).(1)求抛物线的解析式.(2)在y轴上找一点 巳 使得 EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点 Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,

10、BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.¥Ha-*C D2020年贵州省黔东南州中考数学试卷参考答案与试题解析、选择题(每小题 4分,10个小题,共40分)1 . ( 4分)-2020的倒数是()D.20201A. - 2020B . - 2020C. 2020【解答】解:-2020的倒数是-2020-,故选:B.2. (4分)下列运算正确的是()A . (x+y) 2=x2+y2B, x3+x4= x7C. x3?x2= x6D. (-3x) 2=9x2【解答】解:A、(x+y) 2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同

11、类项,无法合并,故此选项错误;C、x3?x2=x5,故此选项错误;D、(- 3x) 2=9x2,正确.故选:D .3. (4分)实数2v10介于()C. 6和7之间D. 7和8之间A . 4和5之间 B . 5和6之间【解答】 解:: 2/0= v40,且 6<v40'V7,.6<2 yAO V 7.故选:C.4. (4分)已知关于x的一元二次方程 x2+5x- m= 0的一个根是2,则另一个根是()A . - 7B . 7C. 3D. - 3【解答】解:设另一个根为 x,则x+2 = 5,解得x= - 7.故选:A.5. (4分)如图,将矩形 ABCD沿AC折叠,使点B落

12、在点B'处,B' C交AD于点E,若/l=25° ,则/ 2 等于()D. 60A. 25B. 30°C. 50°【解答】 解:由折叠的性质可知:/ ACB' =/ 1 = 25 四边形ABCD为矩形, . AD / BC, / 2=/ 1 + /ACB' =25° +25° =50° .6. (4分)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()(主视图)f左视图)A. 12 个B. 8 个C. 14 个D. 13 个【解答】解:底

13、层正方体最多有 9个正方体,第二层最多有 4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7. (4分)如图,。的直径 CD = 20, AB是。的弦,ABXCD,垂足为 M,OM:OC=3:5,则AB的长为()A. 8B. 12C. 16D. 2v91【解答】解:连接OA, 。0 的直径 CD = 20, OM : OD = 3: 5,.OD = 10, OM = 6, .ABXCD, AM=,??? ??? = V1(2- 62 =8, .AB=2AM = 16.故选:C.8. (4分)若菱形ABCD的一条对角线长为 8,边CD的长是方程x2- 10x+24= 0的一

14、个根,则该菱形ABCD的周长为()A. 16B. 24C. 16 或 24D. 48【解答】解:如图所示:四边形ABCD是菱形,.AB=BC=CD=AD,.x2- 10x+24 = 0,因式分解得:(x-4) (x-6) = 0,解得:x = 4或x = 6,分两种情况:当AB=AD = 4时,4+4=8,不能构成三角形;当 AB=AD = 6 时,6+6>8,菱形 ABCD的周长=4AB = 24.6 , 一 一 ,9. (4分)如图,点 A是反比例函数 尸? (x>0)上的一点,过点 A作ACy轴,垂足为点C,AC交反比例函数y= 2?勺图象于点B,点P是x轴上的动点,则4PA

15、B的面积为()D. 8【解答】解:如图,连接 OA、OB、PC.AC,y 轴,11SaAPC= SaAOC= 2 x|6|= 3, SaBPC= SaBOC= 2 X|2|= 1 ,SaPAB= SaAPC SaBPC= 2.10. (4分)如图,正方形 ABCD的边长为2, 0为对角线的交点,点 E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧??再分另1J以E、F为圆心,1为半径作圆弧???效??则图中阴影部分的面积为()A.兀1B.兀2C.兀3D.4 兀【解答】解:由题意可得,阴影部分的面积是:1?兀 X22- 1?X 12 - 2 (1X1- 1?兀 X 12) = U-2,

16、42v 4故选:B.二.填空题:(每小题3分,10个小题,共30分)11. (3 分)cos60° =1 .1【解答】解:cos60 = 2.1故答案为:212. (3分)2020年以来,新冠肺炎横行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约 3200000人,其中3200000用科学记数法表示为3.2x 106 .【解答】 解:3200000= 3.2X 106.故答案为:3.2X106.213. (3分)在头数氾围内分解因式: xy - 4x= x (y+2) (y - 2).【解答】解:xy2 - 4x=x (y2-4)=x (y+2) (y-

17、 2).故答案为:x (y+2) (y-2).5?- 1 >3(?+ 1)14. (3分)不等式组11的解集为2<x<6 .2?- 1<4- 3?【解答】解:解不等式5x- 1>3 (x+1),得:x>2,解不等式-x - K 4- 1x,得:x< 6,23则不等式组的解集为 2vxw 6,故答案为:2vxw 6.15. (3分)把直线y=2x- 1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为y=2x+3 .【解答】解:把直线y=2x- 1向左平移1个单位长度,得到 y=2 (x+1) - 1 = 2x+1,再向上平移2个单

18、位长度,得到 y=2x+3.故答案为:y=2x+3.16. (3分)抛物线y=ax2+bx+c (aw0)的部分图象如图所示,其与x轴的一个交点坐标为(-3, 0),对称轴为x=-1,则当y<0时,x的取值范围是一3v xv 1 .【解答】解::物线y=ax+bx+c (aw0)与x轴的一个交点坐标为(-3, 0),对称轴,抛物线与x轴的另一个交点为(1, 0),由图象可知,当y<0时,x的取值范围是-3vxv1.故答案为:-3V x<1.17. (3分)以?ABCD对角线白交点 。为原点,平行于 BC边的直线为x轴,建立如图所示C点坐标为(2, - 1)的平面直角坐标系.若

19、 A点坐标为(-2, 1),则DS【解答】解:?ABCD对角线白交点。为原点,A点坐标为(-2, 1),.点C的坐标为(2, - 1),故答案为:(2, - 1).18. (3分)某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是【解答】解:画出树状图得:开始甲/乙 丙甲丙乙乙后丙共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,1,出场顺序恰好是甲、乙、丙的概率为6,19. (3分)如图,AB是半圆。的直径,AC=AD, OC = 2, Z CAB =30° ,则点。到CD的距离OE为亚.【解答】 解:AC

20、 = AD, /A=30 ./ ACD = Z ADC =75 AO= OC, ./ OCA=Z A= 30° ,./OCD = 45° ,即 OCE是等腰直角三角形,在等腰RtOCE中,OC=2;因此OE= v2.20. (3分)如图,矩形 ABCD中,AB=2, BC= v2, E为CD的中点,连接 AE、BD交于,,一,4点P,过点P作PQLBC于点Q,则PQ= -3-ABCD是矩形, .AB/CD, AB = CD, AD=BC, /BAD=90° ,.E为CD的中点,11-de=产=,ab,. ABPsEDP ,? ?一=一,? ?2? -1? 2一 )

21、? 3PQ± BC,PQ / CD, . BPQA DBC,? ? 2? ? 3. CD = 2,PQ=,4故答案为:4.3三、解答题:(6个小题,共80分)21. (14 分)(1)计算:(;)2- |v2- 3|+2tan45° 一 ( 2020-兀)0;(2)先化简,再求值:(/一-a+1) -2-4一,其中a从-1, 2, 3中取一个你认为 ?+1)?+2?+1合适的数代入求值.10C【解答】 解:(1) (一) 2- h/2- 3|+2tan45 - ( 2020 -兀)02=4+v2 - 3+2X1 - 1=4+ v2 - 3+2 1=2+ v2 ;(2) (-

22、 a+1)?+1?-4?+2?+13-(?-1)(?+1)?+12乂 (?+1) (?+2)(?-2)-(?+2)(?-2) ?+1要使原式有意义,只能 a= 3,则当a= 3时,原式=-3- 1 = - 4.22. (12分)某校对九年级学生进行一次综合文科中考模拟测试,成绩 x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D 表示),A 等级:90<x< 100, B 等级:80<x< 90, C 等级:60<x<80, D 等级:0Wxv 60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整

23、的统计图表.等级频数(人数)频率Aa20%B1640%请你根据统计图表提供的信息解答下列问题:(1)上表中的 a 8 , b= 12 , m= 30%(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,求抽取的两名学生恰好是一男一女的概率.10%请用画树状图或列表的方法(1 20% 40% 10%) =12,【解答】 解:(1) a=16+40%X20%=8, b=16 + 40%xm=1 - 20% - 40%- 10% =30%;故答案为:8, 12, 30%;(2)本次调查共抽取了 4+10% = 40名学生;补全条形图如图所示;(3)将

24、男生分别标记为AA(AB(B,A)a(a,A)(ab(b,A)(b共有12种等可能的结果,A, B,女生标记为a, b,BabB) (A, a) (A, b)(B, a) (B, b)B)(a, b)B)(b, a)恰为一男一女的有8种,一82抽得恰好为“一男一女”的概率为一 =- .12323. (12分)如图,AB是。O的直径,点 C是。O上一点(与点 A, B不重合),过点C作直线 PQ,使得/ ACQ=/ABC.(1)求证:直线PQ是。的切线.1(2)过点A作A&PQ于点D,交。O于点E,若。的半径为2, sin/DAC= 求图中阴影部分的面积.G【解答】解:(1)证明:如图,

25、连接 OC, AB是。O的直径,ACB=90° , .OA= OC, ./ CAB=Z ACO. . / ACQ=Z ABC, .Z CAB+Z ABC=Z ACO + Z ACQ = Z OCQ=90° ,即 OCXPQ, 直线PQ是。O的切线.(2)连接OE,,一一 1 一 ,一. sin/ DAC= 2, ADXPQ,DAC= 30° , / ACD= 60°又. OA = OE, . AEO为等边三角形, ./ AOE=60° . 1- S阴影=S扇形SAEO1一=S 扇形-2OA?OE?sin6060?2 1V3=360 X2 - 2

26、 X2X2X 丁2?-=旬-v3.3.一、.2? 一3件甲商品和2件乙商品,需1. 图中阴影部分的面积为 -V3. 324. (14分)黔东南州某超市购进甲、乙两种商品,已知购进60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为 x (单位:元/件),在销售过程中发现:当 11WxW19时, 甲商品的日销售量 y (单位:件)与销售单价 x之间存在一次函数关系,x、y之间的部 分数值对应关系如表:销售单价x (元/件)1119日销售量y (件)182请写出当11<x< 19时,y与x之间的函数关系式.(3)在(2)的条

27、件下,设甲商品的日销售利润为 w元,当甲商品的销售单价 x(元/件) 定为多少时,日销售利润最大?最大利润是多少?【解答】解:(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:3?+2?+2?= 603?= 65,解得:,?= 10?= 15乙两种商品的进货单价分别是10、15 元/件.(2)设y与x之间的函数关系式为.y与x之间的函数关系式为y= - 2x+40 (11<x<19).y=k1x+b1,将(11, 18), (19, 2)代入得:,11?+?= 18?= -219? + ?= 2 '斛/ ?= 40(3)由题意得:w = (- 2x+40) (

28、x - 10)=-2x2+60x - 400=-2 (x- 15) 2+50 (11 w xw 19).当x=15时,w取得最大值50.,当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.25. (14分)如图1, ABC和4DCE都是等边三角形.探究发现(1) ABCD与4ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,/ ADC = 30° , AD = 3, CD = 2,求BD的长.(3)若B、C、E三点在一条直线上 (如图2),且 ABC和 DCE的边长分别为 1和2, 求4ACD的面积及AD的长.图

29、1S2【解答】解:(1)全等,理由是: ABC和 DCE都是等边三角形, .AC=BC, DC = EC, Z ACB = Z DCE = 60° , / ACB+ / ACD = / DCE+ / ACD ,即/ BCD = Z ACE,在 BCD和 ACE中,? ?/ ?/ ?= ?ACEA BCD ( SAS);(2)如图 3,由(1)得: BCDACE,,BD= AE,. DCE都是等边三角形,CDE=60° , CD = DE = 2,. / ADC= 30° , ./ADE = / ADC+/CDE=30° +60° = 90在 R

30、tADE 中,AD = 3, DE = 2, AE=,?+ ?= v9 + 4 =示,BD= vl3;(3)如图2,过A作AF LCD于F,B、C、E三点在一条直线上, .Z BCA+Z ACD + Z DCE = 180° ,ABC和 DCE都是等边三角形, ./ BCA=Z DCE = 60 ./ ACD= 60° ,在 RtAACF 中, ?sin/ACF=?AF = AC X sin/ACF = 1 X=日, 22 'Sacd= 1 X?<?= 1 X2 x?= g2222.CF=ACXcos/ACF=1X1= 1,22_13FD = CD - CF=2- 2=2,在 RtAAFD 中,AD2=AF2+FD2= (3)2 + (|)2 = 3,AD= v3;26. (14分)已知抛物线 y=ax2+bx+c (aw0)与x轴交于A、B两点(点A在点B的左边), 与y轴交于点C (0, - 3),顶点D的坐标为(1 , - 4).(1)求抛物线的解析式.(2)在y轴上找一点 巳 使得 EAC为等腰三角形,请

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论