版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1高高斯斯 ( Gauss ) 公公式式12一一. 高斯高斯 ( Gauss ) 公式公式定理定理1. 设空间闭区域 由分片光滑的闭曲面 所围成 , 的方向取外侧 , 在 上具有连续的一阶偏导数 , 则有公式dxdydzzRyQxPRdxdyQdzdxPdydz dSRQPcoscoscos 高斯 ( Gauss ) 公式 dxdydzzRRdxdy 只证函数 P( x, y, z ), Q ( x, y, z ), R ( x, y, z )3),(:),(:2211yxzzyxzz证明证明: 设yxDyxyxzyxzyxz),(, ),(),(),(:21 XY型区域zyxyxD23132
2、1dxdydzzRdzzRyxzyxz),(),(21yxDdxdyyxRyxR) ,() ,(),(2yxz),(1yxzRdxdy yxDdxdyyxR) ,(),(2yxz),(1yxzyxDdxdyyxRyxR ) ,() ,(),(2yxz),(1yxz又所以dxdydzzRRdxdy yxDdxdyyxDdxdyyxR) ,(Rdxdy312 4类似可证类似可证dxdydzzRRdxdy dxdydzyQRdxdyQdzdxPdydz dxdydzzRyQxPdzdxQ dxdydzxPdydzP 三式相加,即得所证Gauss公式:若不是XY型区域 ,则可引进辅助面将其分割成若干个
3、XY型区域,在在辅助面正反两侧曲面积分正负抵消辅助面正反两侧曲面积分正负抵消 ,故仍有5GaussGauss公式的实质公式的实质 表达了空间闭区域上的三重积分与其边界表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系曲面上的曲面积分之间的关系.)coscoscos(dSRQP 由两类曲面积分之间的关系知由两类曲面积分之间的关系知 RdxdyQdzdxPdydzdvzRyQxP)(高斯高斯 ( Gauss ) 公公式式56二、简单的应用例例1 1 计算曲面积分计算曲面积分xdydzzydxdyyx)()( 其中为柱面其中为柱面122 yx及平及平面面3, 0 zz所围成的空间闭所围成
4、的空间闭区域区域 的整个边界曲面的外侧的整个边界曲面的外侧. .xozy113解解, 0,)(yxRQxzyP 7, 0, 0, zRyQzyxP dxdydzzy)(原式原式 dzrdrdzr )sin(.29 (利用柱面坐标得利用柱面坐标得)xozy113dzzrrdrd301020)sin( 高斯高斯 ( Gauss ) 公公式式78使用使用Guass公式时应注意公式时应注意:1 1. .RQP,是是对对什什么么变变量量求求偏偏导导数数; ;2.2.是否满足高斯公式的条件是否满足高斯公式的条件; ;3 3. .是是取取闭闭曲曲面面的的外外侧侧. .高斯高斯 ( Gauss ) 公式公式8
5、92例例dxdyyxzdzdxxydydzzxy)()()(223231.上半球的下侧上半球的下侧是是2222Rzyx:解解.)(12220的上侧的上侧加一平面加一平面Ryxz 11111dxdyyxzdzdxxydydzzxy)()()(2232311dxdydzyy)(12233421R 高斯高斯 ( Gauss ) 公公式式9101dxdyyxzdzdxxydydzzxy)()()(2232131dxdyyxxyD22drrrdR020 332R 1133421R 332R 334R 高斯高斯 ( Gauss ) 公公式式1011xyzo例例 3 3 计算曲面积分计算曲面积分 dszyx
6、)coscoscos(222 , ,其中其中为为 锥面锥面 222zyx 介于平面介于平面 0 z及及)0( hhz 之间的部分的下侧之间的部分的下侧, , cos,cos,cos 是是在在),(zyx处处 的法向量的方向余弦的法向量的方向余弦. . h 高斯高斯 ( Gauss ) 公公式式1112xyDxyzoh 1 解解空间曲面在空间曲面在 面上的投影域为面上的投影域为xoyxyD)(:2221hyxhz 补补充充曲面曲面 不是封闭曲面不是封闭曲面, 为利用为利用高斯公式高斯公式取上侧,取上侧,1 构成封闭曲面,构成封闭曲面,1 .1 围围成成空空间间区区域域,上上使使用用高高斯斯公公式
7、式在在 11高斯高斯 ( Gauss ) 公公式式1213dvzyx)(2 xyDhyxdzzyxdxdy22,)(2.| ),(222hyxyxDxy 其其中中 xyDhyxdzyxdxdy22, 0)(1222dSzyx)coscoscos( .214h xyzo h 1 xyDdszyx1222)coscoscos( 1222dxdyzdzdxydydzxxyDdxdyyxh)(222xyDhyxzdzdxdy222,高斯高斯 ( Gauss ) 公式公式1314 112222)coscoscos(dSzdSzyx xyDdxdyh2.4h 故所求积分为故所求积分为 dSzyx)cosc
8、oscos(222421h 4h .214h xyzoh 1 xyD高斯高斯 ( Gauss ) 公式公式1415:问题问题dxdyyxeydzdxxdydzIz22.,所截部分外侧所截部分外侧被被为为2122zzyxz?公式公式能否加减两平面用高斯能否加减两平面用高斯高斯高斯 ( Gauss ) 公式公式1516三、通量与散度例中例中在第二类曲面积分的引在第二类曲面积分的引流量的概念流量的概念设向量场设向量场kzyxRjzyxQizyxPzyxv),(),(),(),( 是是速速度度场场中中的的一一片片有有向向曲曲面面, , 单单位位时时间间内内流流向向指指定定侧侧的的流流体体的的质质量量
9、. . dxdyzyxRdzdxzyxQdydzzyxP),(),(),( SdV,RQPV 其其中中,dxdydzdxdydzSd.称为有向曲面元称为有向曲面元高斯高斯 ( Gauss ) 公式公式18171、通量的定义设有向量场设有向量场kzyxRjzyxQizyxPzyxA),(),(),(),( 沿场中某一有向曲面的第二类曲面积分为沿场中某一有向曲面的第二类曲面积分为RdxdyQdzdxPdydzSdA称称为为向向量量场场),(zyxA向向正正侧侧穿穿过过曲曲面面的的通通量量. .的的电电通通量量单单位位时时间间通通过过为为电电场场强强度度如如,ESdEI的磁通量的磁通量单位时间通过单
10、位时间通过为磁感应强度为磁感应强度,BSdBI18极限极限VSdAMV lim存在存在, , 2. 2. 散度的定义散度的定义: :Adiv= = VSdAMV lim 处处的的通通量量强强度度反反映映了了在在点点),(zyx高斯高斯 ( Gauss ) 公公式式2019散度在直角坐标系下的形式散度在直角坐标系下的形式SdAdvzRyQxP)(SdAVdvzRyQxPV11)(SdAVzRyQxP1),()( SdAVzRyQxPM1lim积分中值定理积分中值定理,两边取极限两边取极限,zRyQxPAdiv高斯高斯 ( Gauss ) 公式公式2120:说明说明、散度是一数值。、散度是一数值。1),(zyxfu 、梯梯度度:2kzfjyfixfzyxgradf),(向量向量5例例kxzjxyieAxy)sin()cos(2Adiv求求:解解zRyQxPAdiv)cos()sin(22xzxzxyxyexy高斯高斯 ( Gauss ) 公公式式2221思考与练习思考与练习1. 设 为球面2222Rzyx的外侧, 为 所围立体,222zyxr判断下列演算是否正确 ?(1)dxdyrzdzdxrydydzrx333333dvR3R4(2)dxdyrzdzdxrydydzrx333333dvrzzryyrxx33333331Rdxdyzdzd
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广东省普通高等学校招收中等职业学校毕业生统一模拟考试语文题真题(解析版)
- 寒冷性脂膜炎的临床护理
- 鼻窦压痛的健康宣教
- 2021年工业机器人行业埃斯顿分析报告
- 汗孔角化病的临床护理
- 声音嘶哑的健康宣教
- 糖原贮积病Ⅱ型的临床护理
- 《酒店礼仪知识培训》课件
- 黑色素沉着的临床护理
- JJF(陕) 041-2020 宽带采集回放系统校准规范
- 综合能源管理系统平台方案设计及实施合集
- 第12课+自觉抵制犯罪(课时2)【中职专用】中职思想政治《职业道德与法治》高效课堂(高教版2023·基础模块)
- 脑疝学习课件
- 医疗保险信访调研分析报告
- 《二甲醚装置分离精馏工段设计》5200字
- 农村小型水利设施管理措施及效益探讨
- 兵团遴选考试题目及参考答案
- 消防控制室值班记录(制式表格)
- 2023-2024学年四川省广元市市中区六年级数学第一学期期末检测模拟试题含答案
- 文明施工管理体系及实施措施
- 博鳌亚洲论坛2019年年会会务接待服务
评论
0/150
提交评论