版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、xyzo0mm 如果一非零向量垂直如果一非零向量垂直于一平面,这向量就叫做于一平面,这向量就叫做该平面的该平面的法线向量法线向量法线向量的法线向量的特征特征: 垂直于平面内的任一向量垂直于平面内的任一向量已知已知,cban ),(0000zyxm设平面上的任一点为设平面上的任一点为),(zyxmnmm 0必有必有00 nmm一、平面的点法式方程一、平面的点法式方程n1苍柏课资,0000zzyyxxmm 0)()()(000 zzcyybxxa平面的点法式方程平面的点法式方程 平面上的点都满足上方程,不在平面上的平面上的点都满足上方程,不在平面上的点都不满足上方程,上方程称为平面的方程,点都不满
2、足上方程,上方程称为平面的方程,平面称为方程的图形平面称为方程的图形其中法向量其中法向量,cban 已知点已知点).,(000zyx2苍柏课资例例 1 1 求过三点求过三点)4 , 1, 2( a、)2, 3 , 1( b和和)3 , 2 , 0(c的平面方程的平面方程.解解6, 4, 3 ab1, 3, 2 ac取取acabn ,1, 9,14 所求平面方程为所求平面方程为, 0)4()1(9)2(14 zyx化简得化简得. 015914 zyx3苍柏课资例例 2 2 求过点求过点)1 , 1 , 1(,且垂直于平面,且垂直于平面7 zyx和和051223 zyx的平面方程的平面方程.,1,
3、 1, 11 n12, 2, 32 n取法向量取法向量21nnn ,5,15,10 , 0)1(5)1(15)1(10 zyx化简得化简得. 0632 zyx所求平面方程为所求平面方程为解解4苍柏课资由平面的点法式方程由平面的点法式方程0)()()(000 zzcyybxxa0)(000 czbyaxczbyaxd 0 dczbyax平面的一般方程平面的一般方程法向量法向量.,cban 二、平面的一般方程二、平面的一般方程5苍柏课资平面一般方程的几种特殊情况:平面一般方程的几种特殊情况:, 0)1( d平面通过坐标原点;平面通过坐标原点;, 0)2( a , 0, 0dd平面通过平面通过 轴;
4、轴;x平面平行于平面平行于 轴;轴;x, 0)3( ba平面平行于平面平行于 坐标面;坐标面;xoy类似地可讨论类似地可讨论 情形情形.0, 0 cbca0, 0 cb类似地可讨论类似地可讨论 情形情形.6苍柏课资例例 3 3 设平面过原点及点设平面过原点及点)2, 3, 6( ,且与平面,且与平面824 zyx垂直,求此平面方程垂直,求此平面方程.设平面为设平面为, 0 dczbyax由平面过原点知由平面过原点知, 0 d由由平平面面过过点点)2, 3, 6( 知知0236 cba,2 , 1, 4 n024 cba,32cba . 0322 zyx所求平面方程为所求平面方程为解解备注:两个
5、方程求三个未知数可以将其中一个当做已知,到最后约掉7苍柏课资例例 4 4 设设平平面面与与zyx,三三轴轴分分别别交交于于)0 , 0 ,(ap、)0 , 0(bq、), 0 , 0(cr(其其中中0 a,0 b,0 c) ,求求此此平平面面方方程程.设平面为设平面为, 0 dczbyax将三点坐标代入得将三点坐标代入得 , 0, 0, 0dccdbbdaa,ada ,bdb .cdc 解解8苍柏课资,ada ,bdb ,cdc 将将代入所设方程得代入所设方程得1 czbyax平面的截距式方程平面的截距式方程x轴轴上上截截距距y轴轴上上截截距距z轴轴上上截截距距9苍柏课资例例 5 5 求求平平
6、行行于于平平面面0566 zyx而而与与三三个个坐坐标标面面所所围围成成的的四四面面体体体体积积为为一一个个单单位位的的平平面面方方程程.设平面为设平面为, 1 czbyaxxyzo, 1 v, 12131 abc由所求平面与已知平面平行得由所求平面与已知平面平行得,611161cba (向量平行的充要条件)(向量平行的充要条件)解解备注:平行于一个平面也可以先设为6x+y+6z+a=0,然后再去求解10苍柏课资,61161cba 化简得化简得令令tcba 61161,61ta ,1tb ,61tc ttt61161611 代入体积式代入体积式,61 t, 1, 6, 1 cba. 666 z
7、yx所求平面方程为所求平面方程为11苍柏课资定义定义(通常取锐角)(通常取锐角)1 1n2 2n 两平面法向量之间的夹角称为两平面的两平面法向量之间的夹角称为两平面的夹角夹角. ., 0:11111 dzcybxa, 0:22222 dzcybxa,1111cban ,2222cban 三、两平面的夹角三、两平面的夹角12苍柏课资按照两向量夹角余弦公式有按照两向量夹角余弦公式有222222212121212121|coscbacbaccbbaa 两平面夹角余弦公式两平面夹角余弦公式两平面位置特征:两平面位置特征:21)1( ; 0212121 ccbbaa21)2( /.212121ccbba
8、a 13苍柏课资例例6 6 研究以下各组里两平面的位置关系:研究以下各组里两平面的位置关系:013, 012)1( zyzyx01224, 012)2( zyxzyx02224, 012)3( zyxzyx解解)1(2222231)1(2)1(|311201|cos 601cos 两平面相交,夹角两平面相交,夹角.601arccos 14苍柏课资)2(,1 , 1, 21 n2, 2, 42 n,212142 两平面平行两平面平行21)0 , 1 , 1()0 , 1 , 1( mm两平面平行但不重合两平面平行但不重合)3(,212142 21)0 , 1 , 1()0 , 1 , 1( mm
9、两平面平行两平面平行两平面重合两平面重合.15苍柏课资例例7 7 设设),(0000zyxp是是平平面面byax 0 dcz外外一一点点,求求0p到到平平面面的的距距离离. ),(1111zyxp|pr|01ppjdn 1pnn0p 00101prnppppjn ,10101001zzyyxxpp 解解16苍柏课资 2222222220,cbaccbabcbaan00101prnppppjn 222102221022210)()()(cbazzccbayybcbaxxa ,)(222111000cbaczbyaxczbyax 17苍柏课资0111 dczbyax)(1 p 01prppjn,2
10、22000cbadczbyax .|222000cbadczbyaxd 点到平面距离公式点到平面距离公式18苍柏课资平面的方程平面的方程(熟记平面的几种特殊位置的方程)(熟记平面的几种特殊位置的方程)两平面的夹角两平面的夹角.点到平面的距离公式点到平面的距离公式.点法式方程点法式方程.一般方程一般方程.截距式方程截距式方程. (注意两平面的(注意两平面的位置位置特征)特征)四、小结四、小结19苍柏课资思考题思考题 若若平平面面02 zkyx与与平平面面032 zyx的的夹夹角角为为4 ,求求? k20苍柏课资思考题解答思考题解答,1)3(2)2(112)3(214cos222222 kk,14
11、53212 kk.270 k21苍柏课资一、一、 填空题:填空题:1 1、 平面平面0 czbyax必通过必通过_, (其中(其中 cba,不全为零) ;不全为零) ;2 2、平面、平面0 dczby_x轴;轴;3 3、平面、平面0 czby_x轴;轴;4 4、通过点、通过点)1,0,3( 且与平面且与平面012573 zyx平平 行的平面方程为行的平面方程为 _ _;5 5、通过、通过),0,0()0,0()0,0,(cba、三点的平面方三点的平面方 _;6 6、 平面平面0522 zyx与与xoy面的夹角余弦为面的夹角余弦为_ _ _,与,与yoz面的夹角余弦为面的夹角余弦为_, 与与zo
12、x面的夹角的余弦为面的夹角的余弦为_;练练 习习 题题22苍柏课资二、二、 指出下列各平面的特殊位置,并画出各平面:指出下列各平面的特殊位置,并画出各平面:1 1、 0632 yx;2 2、 1 zy;3 3、 056 zyx. .三、三、 求过点求过点)2,2,2( ,)1,1,1( 和和)2,1,1( 三点的三点的 平面方程平面方程 . .四、四、 点点)1,0,1( 且平行于向量且平行于向量 1,1,2 a和和 0,1,1 b的平面方程的平面方程 . .五五、 求求通通过过z轴轴和和点点)2,1,3( 的的平平面面方方程程 . .六六、 求求与与已已知知平平面面0522 zyx平平 行行且且与与 三三坐坐标标面面所所构构成成的的四四面面体体体体积积为为 1 1 的的平平面面方方程程 . .23苍柏课资一、一、1 1、(0,0,0)(0,0,0); 2 2、平行于;、平行于; 3 3、通过;、通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度柴油交易平台建设与运营合同样本4篇
- 2025年度旅游度假区场地租赁及旅游服务合同11篇
- 2024年高端住宅小区二零二四年度饮用水品质提升合同3篇
- 个性化珠宝订制及保养服务合同书
- 2024药店药品销售经理聘用合同范本3篇
- 2025年度酒店餐饮场地租赁转让意向协议范本4篇
- 专业家务助理合作协议(2024规范版)
- 2025年智慧城市建设项目土地租赁合同样本8篇
- 2025年度违法建筑拆除与历史文化遗产保护合同4篇
- 2025年茶山茶叶加工厂租赁合作协议范本4篇
- (二统)大理州2025届高中毕业生第二次复习统一检测 物理试卷(含答案)
- 影视作品价值评估-洞察分析
- 公司员工出差车辆免责协议书
- 2023年浙江杭州师范大学附属医院招聘聘用人员笔试真题
- 江苏某小区园林施工组织设计方案
- 口腔执业医师定期考核试题(资料)带答案
- 2024人教版高中英语语境记单词【语境记单词】新人教版 选择性必修第2册
- 能源管理总结报告
- 药店医保政策宣传与执行制度
- 勘察工作质量及保证措施
- 体外膜肺氧合(ECMO)并发症及护理
评论
0/150
提交评论