版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 抛物线(学案)b一、 知识梳理:1. 抛物线的定义 定义的理解:定点在直线上,轨迹是: .2. 抛物线的标准方程及性质(见下表)图形顶点对称轴焦点准线离心率焦半径焦点弦公式x轴x轴y轴y轴3、焦半径公式(1)y2=2px (p>0) , m(x0, y0) 为抛物线上任意一点。f为抛物线的焦点, |mf|=p2+x0 (2)、n=p1+cos , m=p1-cos 1m+ 1n = 2p 4、若抛物线y2=2px (p>0)过焦点的弦ab,设a(x1,y1)b(x2,y2),则有下列结论:(1)、|ab|=p+x1+x2(2)、|ab|=2psin2( y2=2px (p>
2、0), |ab|=2pcos2( x2=2py (p>0)(3)、|ab|=2pcos2( x2=2py (p>0)(通径是最短的焦点弦)(4)、x1x2=p24 , y1y2=-p2(5)、过焦点且垂直于对称轴的弦叫通径:|ab|=2p(6)、焦点弦端点与顶点构成的三角形面积: saob=p22sin=12|ab|on|=12|of|a1 b1|=12|of|ya-yb|(7)、以焦点弦为直径的圆与准线相切(8)、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处?结论延伸:切线交点与弦中点连线平行于对称轴结论发散:当弦ab不过焦点即切线交点p不在准线上时,切线交点
3、与弦中点的连线也平行于对称轴(9)、过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点。结论延伸:过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径(10)、如图,ab是过抛物线(p0)焦点f的弦,q是ab的中点,l是抛物线的准线,过点a,b的切线相交于p点,pq与抛物线交于点m(1)与是否有特殊的位置关系?结论:papb(2)与是否有特殊的位置关系?结论:pfab(3)点m与点p、q的关系,结论:m平分pq(4)直线pa与a1ab,直线pb与b1ba的关系,结论:pa平分a1ab,pb平分b1ba(5)与的大小比较,结论:(6)的最值问题:结论: 课下思考:当弦ab不过焦点,
4、切线交于p点时,有无与上述结论类似结果则,pa平分a1ab,同理pb平分b1ba点m平分pq【练习】(2006年重庆高考(文)22)对每个正整数n,是抛物线上的点,过焦点f的直线fan交抛物线于另一点,(1)试证:(n1)(2)取,并cn为抛物线上分别以an与bn为切点的两条切线的交点,求证:(n1)【作业】(1)、证明上述问题中的结论发散(2)、已知抛物线的焦点为f,a,b是抛物线上的两动点,且(0),过a,b两点分别作抛物线的切线,设其交点为m,(1)证明:的值;(2)设的面积为s,写出的表达式,并求s的最小值(3)、已知抛物线c的方程为,焦点为f,准线为l,直线m交抛物线于两点a,b;1
5、/ 过点a的抛物线c的切线与y轴交于点d,求证:;2/ 若直线m过焦点f,分别过点a,b的两条切线相交于点m,求证:ambm,且点m在直线l上5、直线与抛物线的关系(1)、kabym=p(2)、直线与抛物线的公共点的情况6、二次函数y=ax2+bx+c(a0) 按向量m=(b2a,-4ac-b24a) 平移得到y=ax2,其中平移后坐标系下的焦点坐标为(0,14a),平移前的焦点坐标为((-b2a,1-4ac+b24a)7、抛物线的焦点的位置的判断:看方程中的一次项,一次项是哪个变量,焦点就在哪个变量对应的坐标轴上,而且正系数在正半轴,负系数在负半轴;8、a、b两点都在抛物线上,且oaob,则
6、x1x2=4p , y1y2=-4p2二、题型探究探究一:抛物线的标准方程例1:根据下列条件求出抛物线的标准方程(1)、焦点到准线的距离是2;(2)、已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点a(-3,y)到焦点的距离是5,探究二:抛物线的几何性质例2:过抛物线y2=4x的焦点作一条直线与抛物线相交于a,b两点,它们的横坐标之和为5,则这样的直线()(a) 有且只有一条(b)有且仅有两条(c)有无数条 (d)不存有例3:已知点p是抛物线y2=2x上任意一点,f为抛物线的焦点,点a(3,2),则|pa|+|pf|的最小值为 ,此时p的坐标是 探究三:直线与抛物线的关系例4:已知a,b是抛
7、物线上两点,o为原点,且oaob,求证:(1)a,b两点的横坐标之积和纵坐标之积都是常数;(2)、直线ab过定点。三、方法提升:1、抛物线的定义是对抛物线考察的重点,往往从几何代数两个方面考察:2、关于直线与抛物线的交点问题,相对于椭圆与双曲线来说,由于其方程的特点,直接设交点的坐标解决问题简便易行;直线方程也可以根据方程的特点,灵活设为y=kx+b或者x=my+a四、反思感悟 五、课时作业1过抛物线的焦点作直线交抛物线于,两点,如果,那么=(a)10 (b)8 (c)6 (d)42已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为( )(a)3 (b)4 (c)5 (d)63过抛物线的
8、焦点作直线交抛物线于、两点,若线段、的长分别是、,则=( ) (a) (b) (c) (d)4顶点在原点,焦点在y轴上,且过点p(4,2)的抛物线方程是()(a) x28y (b) x24y (c) x22y (d) 5抛物线y28x上一点p到顶点的距离等于它们到准线的距离,这点坐标是(a) (2,4) (b) (2,±4) (c) (1,) (d) (1,±)6过抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是 _ 7抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长等于8,则抛物线方程为8抛物线y26x,以此抛物线的焦点为圆心,且与抛物线的准线相切的圆的方
9、程是 9以双曲线的右准线为准线,以坐标原点o为顶点的抛物线截双曲线的左准线得弦ab,求oab的面积 10正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求这个正三角形的边长11正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求正三角形外接圆的方程12已知的三个顶点是圆与抛物线的交点,且的垂心恰好是抛物线的焦点,求抛物线的方程 13已知直角的直角顶点为原点,、在抛物线上,(1)分别求、两点的横坐标之积,纵坐标之积;(2)直线是否经过一个定点,若经过,求出该定点坐标,若不经过,说明理由;(3)求点在线段上的射影的轨迹方程 14已知直角的直角顶点为原点,、在抛物线上,原点在直线上的射影为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投资借款协议书
- 医疗废物处理授权委托书
- 环保技术招投标管理
- 船舶配件物流公司聘用合同
- 个性办公家具招标方案
- 健身器材专利申请策略
- 物联网设备双电源运行要求
- 城市住宅建设施工合同范本
- 机场安检监控议标承诺书
- 医疗机构建设农民工薪酬承诺书
- 三相异步电动机起动的毕业论文
- 苹果商店所有地区价格和等级表
- 【参考】华为腾讯职位管理0506
- 五年级英语上册Unit1Getupontime!教案陕旅版
- 风机安装工程质量通病及预防措施
- 三角形钢管悬挑斜撑脚手架计算书
- 剪纸教学课件53489.ppt
- 旅游业与公共关系PPT课件
- 劳动法讲解PPT-定稿..完整版
- 彩色的翅膀_《彩色的翅膀》课堂实录
- 假如你爱我的正谱
评论
0/150
提交评论