




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、培养具有世界眼光的现代人! !简学风教育小学奥数公式和差问题的公式(和+差)+2=大数(和一差)+2=小数和倍问题的公式和+(倍数1)=小数小数X倍数=大数(或者和小数=大数)差倍问题的公式差+(倍数1)=小数 小数X倍数=大数(或 小数+差=大数)植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形 :如果在非封闭线路的两端都要植树, 那么 :株数=段数+ 1=全长+株距1全长=株距X (株数一 1)株距=全长+ (株数一 1)如果在非封闭线路的一端要植树, 另一端不要植树, 那么 :株数=段数=全长+株距全长=株距X株数株距=全长+株数如果在非封闭线路的两端都不要植树, 那么 :
2、株数=段数1=全长+株距1全长=株距X (株数+ 1)株距=全长+ (株数+ 1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长+株距全长=株距X株数株距=全长+株数盈亏问题的公式(盈+亏)+两次分配量之差=参加分配的份数(大盈-小盈)+两次分配量之差=参加分配的份数(大亏-小亏)+两次分配量之差=参加分配的份数相遇问题的公式相遇路程=速度和X相遇时间相遇时间=相遇路程+速度和速度和=相遇路程+相遇时间追及问题的公式追及距离=速度差X追及时间追及时间=追及距离+速度差速度差=追及距离+追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度
3、)+2水流速度=(顺流速度-逆流速度)+2浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量+溶液的重量X 100唳浓度溶液的重量X浓度=溶质的重量溶质的重量+浓度=溶液的重量利润与折扣问题的公式利润=售出价一成本禾润率=禾1润+成本X 100唳(售出价+成本1)X100% 涨跌金额=本金X涨跌百分比折扣=实际售价+原售价X 100%斫扣 1)利息=本金X利率X时间税后利息=本金X利率X时间X (1 20%)1每份数X份数=总数 总数+每份数=份数 总数+份数=每份数2 1倍数X倍数=几倍数 几倍数+1倍数=倍数 几倍数一倍数=1倍数3速度x时间=路程 路程+速度=时间 路程+时间=速
4、度4单价X数量=总价 总价+单价=数量 总价+数量=单价5工作效率X工作时间=工作总量 工作总量+工作效率=工作时间 工作总量+工作时间=工作效率 6加数+加数=和和个加数=另一个加数7被减数减数=差被减数-差=减数 差+减数=被减数8因数x因数=积积+一个因数=另一个因数9被除数+除数=商 被除数+商=除数 商x除数=被除数 小学数学图形计算公式1正方形C周长S面积a边长周长=边长X 4C=4a面积=边长x边长S=ax a2正方体V:体积a:棱长表面积=棱长x棱长x 6S Bl=aX aX 6体积=棱长x棱长x棱长V=ax ax a3长方形C周长S面积a边长周长=(长+宽)X2C=2(a+b
5、)面积=长乂宽S=ab4长方体V:体积s:面积a:长b:宽h:高(1)表面积(长X宽+长X高+宽X高)X2S=2(ab+ah+bh)体积=长乂宽x高V=abh5三角形s面积a底h高面积=底>< 高+ 2s=ah+2三角形高=面积X2+底三角形底=面积X2+高6平行四边形s面积a底h高面积=底>< 高s=ah7梯形s面积a上底b下底h高面积=(上底+下底)x高+2s=(a+b) x h + 28圆形S面积C周长 n d=直径r=半径(1)周长=直径xn =2xnx半径C=n d=2n r面积=半径x半径x n9圆柱体v:体积h:高s;底面积r:底面半径c:底面周长 侧面积
6、=底面周长x高 表面积=侧面积+ 底面积X 2体积=底面积X高(4)体积=侧面积+ 2X半径10 圆锥体v: 体积 h: 高 s; 底面积 r: 底面半径体积二底面积x高+ 3总数+总份数=平均数和差问题的公式(和+差)+ 2=大数(和一差)+ 2=小数和倍问题和一(倍数1)=小数小数X倍数=大数(或者和-小数=大数)差倍问题差一(倍数1)=小数小数X倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形 :如果在非封闭线路的两端都要植树, 那么 :株数=段数+ 1=全长+株距1全长=株距X (株数一 1)株距=全长+ (株数一 1)如果在非封闭线路的一端要植树
7、, 另一端不要植树, 那么 :株数=段数=全长+株距全长=株距X株数株距=全长+株数如果在非封闭线路的两端都不要植树, 那么 :株数=段数1=全长+株距1全长=株距X (株数+ 1)株距=全长+ (株数+ 1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长+株距全长=株距X株数株距=全长+株数盈亏问题(盈+亏)+两次分配量之差=参加分配的份数(大盈-小盈)+两次分配量之差=参加分配的份数(大亏-小亏)+两次分配量之差=参加分配的份数相遇问题相遇路程=速度和X相遇时间相遇时间=相遇路程+速度和速度和=相遇路程+相遇时间追及问题追及距离=速度差X追及时间追及时间=追及距离+速度差速度差=追
8、及距离+追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)+2水流速度=(顺流速度-逆流速度)+2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量+溶液的重量X 100唳浓度溶液的重量X浓度=溶质的重量溶质的重量+浓度=溶液的重量利润与折扣问题利润=售出价一成本禾润率=禾1润+成本X 100唳(售出价+成本1)X100% 涨跌金额=本金X涨跌百分比折扣=实际售价+原售价X 100%斫扣 1)利息=本金X利率X时间税后利息=本金X利率X时间X (1 20%)常用数据1X9+ 2=1112X9+3=111123X9+ 4=11111234X
9、 9+5=1111112345X 9+6=111111123456X 9+ 7=11111111234567X 9+8=1111111112345678X 9+ 9=111111111 9X9+ 7=8898X9+6=888 987X 9+ 5=88889876X 9+ 4=8888898765X 9+ 3=888888987654X 9+ 2=88888889876543X 9+ 1=88888888 19+9X9=100118+98X9=10001117+987X 9=1000011116+9876X 9=100000111115+ 98765X 9=10000001111114+ 987
10、654X 9=1000000011111113+ 9876543X 9=100000000111111112+ 98765432X 9=10000000001111111111+ 987654321X 9=100000000001X1=111X11=121111X111=123211111X1111=123432111111X11111=123454321111111X111111=123456543211111111X1111111=123456765432111111111 11111111=123456787654321111111111 111111111=12345678876543
11、211111111111X 1111111111=12345678987654321=225=625=1225=2025=3025=4225=5625=7225=9025142857X 2=285714142857X 3=428571142857X 4=571428142857X 5=714285142857X 6=857142142857X 7=99999912345679X 9=111111111加法中的速算( 1)加法交换律( 2)加法结合律(3)互补数如果两个数的和是整十、整百、整千那么这样的两个数叫做互为补数。减法中的速算( 1)一个数减去几个数的和,可以用这个数依次减去和里面的各个
12、加数。( 2) 一个数减去两个数的差, 可以用这个数先减去差里的被减数, 再加上减数;或用这个数加上差里的减数,再减去被减数。( 3)一个数里连续减去几个数,可以交换减数的位置,差不变。加减法混合运算的性质:( 1)交换的性质:在加减法混合运算式题中,带着数字前面的运算符号,交换加减数的位置顺序进行计算,其结果不变。( 2)结合的性质:在加减混合运算式题中,可以把加数、减数用括号结合起来,当加号后面添括号时, 原来的运算符号不变; 当减号后面添括号时, 则原来的减数变加数,加数变减数。如:在加减混合运算中,根据运算定律和运算性质可以归纳为:括号前面是加号,去掉括号不变号;加号后面添括号,括号里
13、面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。注:号是指数字前面的运算符号。如果我们能够灵活运用运算定律和运算性质计算,会使计算做得又对又快。乘法中速算乘法中的速算,要运用以下定律:( 1)乘法交换律( 2)乘法结合律( 3)乘法分配律(4)乘法性质两个数的差与一个数相乘,可以用被减数和减数分别与这个数 相乘,再把所得的积相减。一个数与两个数的商相乘, 可用这个数先与商里的被除数相乘, 再除以商里的除数;或用这个数先除以商里的除数,再与商里的被除数相乘。5)积的变化规律6)特殊数字的乘积5X2=100025X4=100125X 8=10625X 16=1000037
14、X 3=11175 X 4=300375X 8=3000除法中的速算除法中的速算,要根据以下各种性质:( 1)两个数或几个数的积除以一个数,可以先用积里的任何一个因数除以这个数,所得的商再与其他因数相乘。( 2)一个数除以两个数的积,可以用这个数依次除以积里的各个因数。( 3)一个数除以两个数的商,可以用这个数除以商里的被除数,再乘以商里的除数;或者用这个数乘以商里的除数,再除以商里的被除数。( 4)两个或几个数的和除以一个数,可以把和里的各个数分别除以这个数,再把它们的商相加。( 5)两个数的差除以一个数,可以用被减数、减数分别除以这个数,再把所得的商进行相减。( 6) 商不变的性质: 如果
15、被除数和除数同时扩大或缩小相同的倍数, 商不变。( 7)乘除法混合运算的交换性质:在乘除混合运算中,带着数字前面的运算符号交换乘数、除数的位置,结果不变。在乘法、除法和乘除法混合运算中,根据运算的定律和运算性质,可以归纳为:括号前面是乘号,去掉括号不变号;乘号后面添括号,括号里面不变号;括号前面是除号,去掉括号要变号;除号后面添括号,括号里面要变号;注:号是指数字前面的运算符号。等差数列求和 数列是指按一定规律顺序排列成一列数。 如果一个数列中从第二个数开始, 每一个数减去前一个数所得的差都是相等的话,我们就把这样的一列数叫做等差数列。等差数列中的每一个数都叫做项, 第一个数叫第一项, 通常也
16、叫“首项”, 第二个数叫第二项,第三个数叫第三项最后一项叫做“末项”。等差数列中相邻两项的差叫做“公差”。等差数列中项的个数叫做“项数”。=x n+2n = + +1=(n 1) x +和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题。解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系, 确定总和相当于标准数的多少倍, 然后用除法求出标准数, 再求出其他各数。 为了帮助我们理解题意弄清数量关系, 从而找到解题的途径,最好采用画线段图的方法。和倍应用题的解法可以牢记以下几个公式:和+ (倍数+ 1) =1倍数(较小数)1倍数x
17、倍数=几倍的数(较大的数)或和-小数=大数差倍问题己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题。解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数。解答这类问题,先画线段图,帮助分析数量关系。差一 (倍数1) =1倍数(较小的数)1倍数X倍数几倍的数(较大的数)或 较小数+差=较大的数和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题。解答这种应用题, 首先要弄清两个数相差多少的不同叙述方式。 可以选择大数作为标准数。以小数作为标准数,从和里减去两数的差,恰好是
18、小数是2 倍,除以2 就可以求出小数;若以大数作为标准数,把小数加上两个数的差,正好是两个数,除以 2 就可以求出大数。解答和差问题的基本公式是:(和差)+ 2=较小数(和+差)+ 2=较大数和小数=大数或:大数差=小数和大数=小数或:小数差=大数九、年龄问题己知两个人或几个人的年龄, 求他们年龄之间的某种数量关系; 或己知某些人年龄之间的数量关系, 求他们的年龄等, 这种题称为年龄问题。 年龄问题的特点是:( 1)两人的年龄之差是不变的,称为定差。( 2)两个人的年龄同时都增加同样的数量。( 3)两个年龄之间的倍数关系,随着年龄的增长,也在发生变化。年龄问题的解题方法是:几年后二大小年龄之差
19、+倍数差-小年龄几年前二小年龄-大小年龄差+倍数差平均数求平均数必须知道总数和份数,可以写成公式:平均数=总数+份数总数=平均数X份数份数=总数+平均数相遇问题走路、行车等匀速运动中的速度、时间和路程三者关系的应用题叫行程问题。行程问题根据题目的内容、 性质所需要解答案的问题, 又分为相遇问题、 追及问题、火车过桥问题等。解答各类行程问题的基础,要掌握速度、时间和路程三种量之间的关系:路程二速度X时间时间二路程+速度 速度=路程+时间相遇问题的特点是两个运动物体或人, 同时或不同时从两地相向而行, 或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和X相遇时间二路程 路程+速度和=相遇
20、时间 速度+相遇时间=速度和速度和速度甲 =速度乙追及问题运动的物体或人同向而不同时出发, 后出发的速度快, 经过一段时间追上先出发的, 这样的问题叫做追及问题, 解答追及问题的基本条件是“追及路程”和“速度差”。追及问题的基本数量关系是:追及时间二追及路程+速度差追及路程=速度差X追及时间速度差=追及路程+追及时间行船问题船在江河里航行, 前进的速度与水流动的速度有关系。 船在流水中行程问题, 叫做行船问题(也叫流水问题)。船顺流而下的速度和逆流而上的速度与船速、水速的关系是:顺水速度=船速水速逆水速度=船速水速由于顺水速度是船速与水速的和, 逆水速度是船速与水速的差, 因此行船问题就是和差
21、问题,所以解答行船问题有时需要驼用和差问题的数量关系。船速=(顺水速度+逆水速度)+2水速=(顺水速度逆水速度)+2因为行船问题也是行程问题, 所以在行船问题中也反映了行程问题的路程、 速度与时间的关系。顺水路程=顺水速度x时间逆水路程3水速度X时间过桥问题过桥问题的一船的数量关系是:路程 =桥长车长车速二(桥长+车长)+通过时间通过时间=(桥长+车长)+车速车长二车速X通过时间-桥长桥长二车速X通过时间-车长植树问题在首尾不相接的路线上植树,段数与棵数关系可分为三类:( 1)两端都种树段数=棵数1( 2)一端种一端不种段数=棵数( 3)两端都不种段数=棵数1在首尾相接的路线上种树(如圆、正方
22、形、闭合曲线等)段数=棵数还原问题还原问题又叫逆推问题。 己知一个数的结果, 再经过逆运算反求原数, 叫做还原问题。 解决这类题要从结果出发, 逐步向前一步一步推理, 每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘)。方阵问题很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人数,这类题叫方阵问题。在解决方阵问题时,要搞清方阵中一些量(如层数,最外层人数,最里层人数,总人数)之间的关系。要开动脑筋,可用多种方法来解题。方阵问题的基本特点是:( 1)方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的人数减少 2,每一层就少8。(2)每层人数=(每边
23、人数1)X4(3)每边人数=每层人数+ 4+ 1(4)实心方阵人数=每边人数X每边人数=4X (最外层一边人数一层数)x层数=4X (n-K) XK幻方与数阵幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。这相相等的和叫“幻和”。数阵有三种基本类型:( 1)封闭型,(2)辐射型(3)综合型解数阵问题一般思路是从和相等入手, 确定重处长使用的中心数, 是解答解数阵类型题的解题关键。有时,数阵问题的答案不是唯一的。奇数与偶数加法:偶数偶数=偶数奇数奇数=偶数偶数奇数=奇数减法:偶数偶数=偶数奇数奇数=偶数偶数奇数=奇数乘法:偶数X偶数二偶数奇数X奇数二奇数偶数X奇数=偶数盈亏问题解
24、盈亏问题通常是比较法和对应法结合使用。公式是:人数=两次分配结果差+两次分配数差牛吃草问题 牛吃草问题涉及三种数量:A.原有的草。B.新长出的草。C.牛吃掉的草。牛吃草问题解法一般分为三步: 一、求新生的草量;二、求原有草量;三、求出最终的问题。还原问题解题关键: 在从后往前推算的过程中, 每一步都是做同原来相反的运算, 原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘。假设问题假设法是解答应用题时经常用到的一种方法。 所谓“假设法”就是依据题目中的己知条件或结论作出某种设想, 然后按照己知条件进行推算, 根据数量上出现的矛盾,再适当调整,从而找到正确答案
25、。余数问题一个带余数除法算式包含4个数:被除数+除数=商余数。它们的关系也可表示为:被除数 =除数X商十余数,或(被除数余数)+除数= 商。一笔画和多笔画( 1) 凡是由偶点组成的连通图, 一定可以一笔画成; 画时可以任一偶点为起点,最后能以这个点为终点画完此图。( 2)凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点。乘法原理如果完成一件事需要个步骤, 在第一个步骤中有种不同方法, 在第二个步骤中有 种不同方法,在第 个步骤中有 种不同的方法,那么完成这件事共有种不同的方法。加法原理如果完成一件事有几类方法,在第一类方法中有种不同的选择,
26、在第二类方法中有 种不同选择在第 类方法中有 种不同的选择,那么完成这件事共有种不同的方法。排列 一般地说,从 个不同的元素中任取出 个 元素,按照一定的顺序排成一列,叫做从 个不同元素中取出 个元素的一个排列。一般地, 从 个不同的元素中任取出 个 元素, 排成一列的问题, 可以看成是从个不同元素中取出 个,排在 个不同的位置上的问题,每个排列共需要步,每一步又有若干种不同的方法,排列数可以这样计算:组合一般地说, 从从 个不同的元素中任取出 个 元素组成一组, 叫做从 个不同元素中取出 个元素中一个组合,所有组合的个数,用符号表示。因此我们可以得到组合公式:抽屈原则抽屉原则:把n+1 (或
27、更多)个苹果放到n个抽屉里,那么至少有一个抽屉里有 两个或两个以上的苹果。我们把这个结论称为抽屉原则一。由此我们可以得到抽屉原则二。把(mix n+1)个(或更多个)苹果放进n个抽屉里,必须一个抽屉里有(m+D个(或更多的)苹果。说明:应用抽屉原则解题,要从最坏的情况去思考。列方程解应用题列方程解应用题的一般步骤是:1、根据据题意设某一个示知数为 ;2、依题意找出题中相等的数量关系;3、根据相等的数量关系列出方程;4、解方程;5、检验并写出答案。整除的特征7 整除。分解因式把一个合数写成几个质数相乘的形式,叫做分解质因数。一个自然数的约数的个数,恰为质因数的指数加 1 后的乘积。一个数的完全平
28、方数, 各个质因数的个数, 恰好是平方前这个数各个质因数个数的 2 倍。一个完全平方数各个质因数的个数都是偶数。最大公约数与最小公倍数几个数公有的约数, 叫做这几个数的公约数; 其中最大的一个叫做这几个数的最大公约数。几个数公有的倍数, 叫做这几个数的公倍数; 其中最小的一个, 叫做这几个数的最小公倍数。求两个数的最大公约数一般有三种方法:( 1)分解质因数法( 2)短除法( 3)辗转相除法求几个数的最小公倍数的方法也有三种:( 1)分解质因数法( 2)短除法( 3)分数的比较分母相同的分数比较大小,分子大的分数比较大。分子相同的分数比较大小,分母大的分数反而小。分子和分母都不相同的分数比较大
29、小, 可以把它们转化成分母相同的分数比较大小;也可以把它们转化成分子相同的分数比较大小。用“第三个数” 比较大小用“第三个数” 1 比较大小一个真分数的分子和分母都加上同一个自然数,所得的新分数比原分数大。一个真分数的分子、分母都减去同一个自然数 (这个自然数小于真分数的分子)所得的新分数比原分数小。一个假分数的分子、分母都减去同个自然数(这个自然数小于假分数分母),所得的新分数比原分数大。一个假分数的分子、分母都加上同一个自然数,所得的新分数比原分数小。(对折后剪的次数)X 2+1=得到的段数。最大最小1、解答最大最小的问题,可以进行枚举比较。在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。2、运用规律。( 1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为 0)时,乘积最大。3、考虑极端情况。如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工特种作业-建筑起重机械司机(物料提升机)真题库-3
- 建筑施工特种作业-建筑起重机械安装拆卸工(塔式起重机)真题库-2
- 2023-2024学年陕西省宝鸡市渭滨区高二下学期期末质量监测数学试卷(解析版)
- 胶水嫁接方法解大全
- 质检员岗位说明书
- 佛山条码库存管理制度
- 作业工具使用管理制度
- 作业配合人员管理制度
- 使用机械安全管理制度
- 供水检修班组管理制度
- 2025年烟台市中考地理试卷真题
- 关注老年人心理健康守护幸福 从心开始课件
- 安徽省合肥市名校2025届八年级英语第二学期期末统考试题含答案
- 2024年广东省广州市初中生物会考真题(含答案)
- 2025年电气工程基本知识考试试卷及答案
- 2025年河北省中考麒麟卷生物(一)
- 基层医院护理课件
- 劳动护理鞋子的课件
- 2025年新安全知识竞赛培训试题及答案
- 纪法知识测试题及答案
- 科技论文写作 第2版 课件 第1-5章 科技论文写作概述-英文科技论文的写作
评论
0/150
提交评论