




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1第二章习题第二章习题1.1. 一袋中装有一袋中装有5只球只球,编号为编号为1,2,3,4,5.在袋中同时取在袋中同时取3只只,以以x表示取表示取出的出的3只球中的最大号码只球中的最大号码,写出随机变量写出随机变量x的分布律的分布律. 解解 基本事件是从基本事件是从5只球中同时取只球中同时取3只只,有有 种取法种取法.10! 2! 3! 535 x只能取值只能取值3,4,5.x=3时时,一只球编号为一只球编号为3,另外两只球编号为另外两只球编号为1,2,只有一种取法只有一种取法, x=4时时,一只球编号为一只球编号为4,另外两只球只能从编号为另外两只球只能从编号为1,2,3的三只球的三只球中取
2、中取,有有 种取法种取法.323 x=5时时,一只球编号为一只球编号为5,另外两只球只能从编号为另外两只球只能从编号为1,2,3,4的四只球的四只球 中取中取,有有 种取法种取法.6!2!2!424 1013 xp.1034 xp.1065 xpx的分布律为的分布律为. 5 , 4 , 3,1021 kkkxp也可列表表示也可列表表示x 3 4 5pk 1/10 3/10 6/1023.3. 设在设在15只同类型的零件中有只同类型的零件中有2只是次品只是次品,在其中取在其中取3次次,每次任取每次任取1只只,作不放回抽样作不放回抽样.以以x表示取出次品的只数表示取出次品的只数.(1)求求x的分布
3、律的分布律;(2)画出画出分布律的图形分布律的图形. 解解 法一法一:x可能取值为可能取值为0,1,2. px=0=p(a1a2a3)=p(a1)p(a2|a1)p(a3|a1a2)3522131114121513 px=1=p(a1a2a3)+p(a1a2a3)+p(a1a2a3)=p(a1)p(a2|a1)p(a3|a1a2)+p(a1)p(a2|a1)p(a3|a1a2)+p(a1)p(a2|a1)p(a3|a1a2131214215133512 px=2=p(a1a2a3)+p(a1a2a3)+p(a1a2a3)=p(a1)p(a2|
4、a1)p(a3|a1a2)+p(a1)p(a2|a1)p(a3|a1a2)+p(a1)p(a2|a1)p(a3|a1a2)1313141152 1311413152 1311421513 351 设事件设事件ai表示表示“第第i次取到正次取到正品品”,i=1,2,3.也可由也可由 px=2=1- -px=0- -px=1351351235221 3法二法二: 用等可能概型用等可能概型. 基本事件是从基本事件是从15只零件中取只零件中取3只只,有有 种取法种取法.1335!12! 3!15315 x=0时时,取出的取出的3只都是正品只都是正品,有有 种取法种取法.1322!10!3!13313
5、x=1时时,取出的取出的3只中有只中有2只正品只正品,1只次品只次品,有有 种取法种取法.13122!11! 2!1312213 x=2时时,取出的取出的3只中有只中有1只正品只正品,2只次品只次品,有有 种取法种取法.1322113 故故px=0=22/35, px=1=12/35, px=2=1/35 .x的分布律为的分布律为x 0 1 2pk 22/35 12/35 1/35其图形为其图形为x0 1 2p22/3512/351/3544.4. 进行重复独立试验进行重复独立试验,设每次试验成功的概率为设每次试验成功的概率为p,失败的概率为失败的概率为q=1- -p(0p1). (1)将试验
6、进行到出现一次成功为止将试验进行到出现一次成功为止,以以x表示所需的试验次数表示所需的试验次数,求求x的分布律的分布律.(此时称此时称x服从以服从以p为参数的几何分布为参数的几何分布.) 将试验进行到出现一次成功为止将试验进行到出现一次成功为止, 所需的试验次数所需的试验次数x=1,2,k, x=k时时,前前k-1次试验均未成功次试验均未成功,第第k次试验才成功次试验才成功,由于各次试验相由于各次试验相互独立互独立,故故px=k=p(a1a2ak-1ak)=p(a1)p(a2)p(ak-1)p(ak)=(1-p)k-1px的分布律为的分布律为 px=k=p(1-p)k-1 , k=1,2, (
7、3)一篮球运动员的投篮命中率为一篮球运动员的投篮命中率为45%.以以x表示他首次投中时累计表示他首次投中时累计已投篮的次数已投篮的次数,写出写出x的分布律的分布律,并计算并计算x取偶数的概率取偶数的概率. 解解 这是这是(1)中中p=0.45的情况的情况,故故x的分布律为的分布律为 px=k=0.45 (0.55)k-1 , k=1,2, 解解 设设ai表示第表示第i次试验成功的事件次试验成功的事件,则则 p(ai)=p, p(ai)=1- -p .5 但这成功的但这成功的r次试验次试验,除最后一次必成功外除最后一次必成功外,另外成功的另外成功的r-1次可以是次可以是总的总的k-1次中的任意次
8、中的任意r-1次次,共有共有 11rk种可能种可能,每一种可能的概率均为每一种可能的概率均为qk-rpr =(1-p)k-rpr.故故y的分布律为的分布律为 , 1,)1 (11 rrkpprkkyprkr (2)将试验进行到出现将试验进行到出现r次成功为止次成功为止,以以y表示所需的试验次数表示所需的试验次数,求求y的分布律的分布律.(此时称此时称y服从以服从以r,p为参数的巴斯卡分布为参数的巴斯卡分布.) 解解 将试验进行到出现将试验进行到出现r次成功为止次成功为止, 所需的试验次数所需的试验次数y=r,r+1,y=k时时,共进行了共进行了k次试验次试验,其中成功其中成功r次次,未成功未成
9、功k-r次次(k r).若后若后r次试验成功次试验成功,则前则前k-r次试验未成功次试验未成功,其概率为其概率为p(a1a2ak-rak-r+ 1ak)=p(a1)p(a2)p(ak-r)p(ak-r+ 1)p(ak)=qk-rprx取偶数可视为所有取偶数可视为所有 x=2n (n=1,2,) 事件的总和事件的总和,其概率为其概率为 1121)55. 0(45. 02nnnnxp1)55.0(55.045.002 nn311155. 155. 0)55. 01)(55. 01(55. 045. 0)55. 01(55. 055. 045. 0155. 01155. 045. 0222 67.
10、7. 设事件设事件a在一次试验中发生的概率为在一次试验中发生的概率为0.3,当当a发生不少于发生不少于3次时次时,指示灯发出信号指示灯发出信号.(1)进行了进行了5次重复独立试验次重复独立试验,求指示灯发出信号的概求指示灯发出信号的概率率;(2)进行了进行了7次重复独立试验次重复独立试验,求指示灯发出信号的概率求指示灯发出信号的概率.解解 设设x表示表示n次重复独立试验中事件次重复独立试验中事件a发生的次数发生的次数,由于事件由于事件a在一次试验中发生的概率在一次试验中发生的概率p=0.3, 故故 xb(n,0.3) .x的分布律为的分布律为nkknkxpknk, 1 , 0,7 . 03 .
11、 0 (1) n=5 所求概率为所求概率为px 3=px=3+px=4+px=554233 . 0557 . 03 . 0457 . 03 . 035 =0.163(2) n=7 所求概率为所求概率为px 3=px=3+px=4+px=5+px=6+px=7=1- -px3=1- -px=0+px=1+px=252677 . 03 . 0277 . 01 . 0177 . 0071 =0.353714.(2)14.(2)求第求第(1)题中的随机变量的分布函数题中的随机变量的分布函数.解解 由第由第(1)题的结果题的结果, x的分布律为的分布律为x 3 4 5pk 1/10 3/10 6/10f
12、(x)=pxx xxkkxxpx3f(x)=03 x4f(x)=px=3=1/104 x5f(x)=px=3+px=4=4/10=2/5x 5f(x)=px=3+px=4+px=5=1总之总之,x的分布函数为的分布函数为 5, 154, 5/243,10/13, 0)(xxxxxf81 15.5. 在区间在区间0,a上任意投掷一个质点上任意投掷一个质点,以以x表示这个质点的坐标表示这个质点的坐标.设设这个质点落在这个质点落在0,a中任意小区间内的概率与这个小区间的长度成比中任意小区间内的概率与这个小区间的长度成比例例.试求试求x的分布函数的分布函数. 解解 由于质点只能落在由于质点只能落在0,
13、a中中,故故xa是不可能事件是不可能事件, pxa=0(1)若若x0,xxx0ax x是不可能事件是不可能事件, f(x)=pxx =0 .(2)若若0 xa ,事件事件a表示表示“质点落在质点落在0,a中小区间中小区间0,x内内”, 则则 p(a)=p0xx与该小区间的长度与该小区间的长度x成比例成比例,令令 p0xx=kx , (0 xa),则则 1=p- -x=pxa=ka,故故 k=1/a,从而从而 p0xx=x/a , (0 xa).因此因此 f(x)=pxxxxx0a=px2, f(x)=pxxxxx0a=px0+p0xa+paxx =1分布函数分布函数f(x)=0, x0 x /
14、a , 0 xa1, x a xf(x)oa1f(x)的图形如右的图形如右,917.17.设随机变量设随机变量x的分布函数为的分布函数为 其其它它, 11 ,ln1,0)(exxxxfx(1)求求px2 ,p0x3,p2x5/2;(2)求概率密度求概率密度 fx(x).解解 (1) px2=fx(2)=ln2p0x3 =fx(3)-)-fx(0) =1p2x5/2e 2.72=fx(5/2)-)-fx(2) =ln(5/2)- -ln2=ln(5/4)(2) f x(x)=fx /(x) exexxx, 01 ,/11, 0 exxexx,1,01 ,/1x=1处处左导数左导数0100lim1
15、) 1 ()(lim11 xxfxfxxxx右导数右导数11lim10lnlim1) 1 ()(lim111 xxxxfxfxxxxx x=e处处exexxexefxfexexxxex11lim1lnlim)()(lim 011lim)()(lim exexefxfexxxex 1018. 18. 设设随机变量随机变量x的概率密度为的概率密度为 其其它它, 021),/11(2)()1(2xxxf 其其它它, 021 ,210,)()2(xxxxxf求求x的分布函数的分布函数f(x),并画出并画出(2)中的中的f(x)及及f(x)的图形的图形. 解解 (1) xdxxfxf)()(x1时时,
16、f(x)=0,1 x2时时,dxxdxxfx)11 ( 20)(112 )21(2)1(21 xxxxxx 2时时, xdxdxxdxxf212120)11 ( 20)(1)1(221 xx总之总之, 2, 121),21(21, 0)(xxxxxxfxf(x)211oxf(x)23/21of(x)和和f(x)的图形如下的图形如下:1119 (2)19 (2) 研究了英格兰在研究了英格兰在1875年年1951年期间年期间,在矿山发生导致在矿山发生导致10人人或或10人以上死亡的事故的频繁程度人以上死亡的事故的频繁程度,得知相继两次事故之间的时间得知相继两次事故之间的时间t(以日计以日计)服从指
17、数分布服从指数分布,其概率密度为其概率密度为其其它它0 t , 0,2411)(241xtetf求分布函数求分布函数ft(t),并求概率并求概率p50t0,dtett24102411 24102411tttee t 0,0)()( dttftftttdttftfttt )()(总之总之, , 0,1)(241ttetf其其它它0 t也可由指数分布也可由指数分布 =241直接得此结果直接得此结果.p50t100 =ft(100)-ft(50)24110024150 ee)1 ()1 (24150241100 eedttft 10050)(dtet 241100502411 10050241te
18、122 20.0.某种型号的器件的寿命某种型号的器件的寿命x(以小时计以小时计)具有以下的概率密度具有以下的概率密度 其其它它, 01000,1000)(2xxxf现有一大批此种器件现有一大批此种器件(设各器件损坏与否相互独立设各器件损坏与否相互独立),任取任取5只只,问其中问其中至少有至少有2只寿命大于只寿命大于1500小时的概率小时的概率. 解解 设设1只器件的寿命大于只器件的寿命大于1500小时的概率为小时的概率为p,而而y是取出的是取出的5只中只中寿命大于寿命大于1500小时的器件数小时的器件数,则则 yb(5,p).由于由于 1500)(1500dxxfxppdxx 15002100
19、03210001500 xy的分布律为的分布律为5 , 1 , 0,313255 kkkypkk所求概率为所求概率为 py 2=1-py2=1-py=0-py=145313215311 243232325115 xdxxfxf)()(x 1000, f(x)=0 xxxxdxxxfx10002,10001100010001000)(,1000=1-px 1500=1-f(1500)132 23.3. 设设xn(3, 22),(1)求求p2x 5,p-42,px3;(2)确确定定c,使得使得pxc=px c;(3)设设d满足满足pxd 0.9,问问d至多为多少至多为多少? 解解 (1) p2x
20、5)5 . 0(1) 1()5 . 0() 1()232()235( =0.8413-1+0.6915=0.5328p-42=px2x2+px-2=1-px 2+px3 =1-px 3) 0(12331 =1-0.5=0.5=1-p|x| 21426.26.(3) 要使要使d满足满足 pxd 0.9, 即即 1-px d9 . 0231 d)28.1()28.1(18997.019 .0123 d28. 123 d解得解得d 3-2.56=0.44.(2)由于由于正态分布的正态分布的分布曲线即分布曲线即概率密度概率密度曲线以直线曲线以直线x= 为对称轴为对称轴.因此因此,px =px.本题中本
21、题中 =3, 故只需取故只需取c=3,就可以使就可以使 pxc=px c. 一工厂生产的某种元件的寿命一工厂生产的某种元件的寿命x(以小时计以小时计)服从参数为服从参数为 =160, 的正态分布的正态分布.若要求若要求p120x 200 0.80,允许允许 最大为多少最大为多少?解解 p1200, x=h(y)=lny, h/(y)=1/y 由由 0lny1 得到得到 1y0 , 其其它它, 01,1)(ln)(eyyyfyfxy 其其它它, 01,1eyy1728.(2)28.(2)设随机变量设随机变量x在在(0,1)上服从均匀分布上服从均匀分布,求求y=-2lnx的概率密度的概率密度;法一法一:fy(y)=py y=p-2lnx y2yexp 12yexp )(12yxef fy(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年基层医疗卫生机构信息化建设中的医疗信息化服务创新趋势报告
- 跨境电商独立站海外市场拓展与本地化策略报告001
- 标本存贮条件登记表
- 口腔科用传感器技术与应用考核试卷
- 供应链风险沟通机制考核试卷
- 创业空间共享经济的消费者行为分析与营销策略考核试卷
- 智慧制造中的信息系统与智能物流集成考核试卷
- 农业机械租赁业务培训线上线下融合模式探索考核试卷
- 农业科技培训体系建设考核试卷
- 高科技核应急机器人在工业领域的应用现状及未来趋势预测
- 医疗器械生产质量管理规范培训试题及答案
- 换热器设备采购合同模板合同
- 阿克苏地区国土空间规划(2021年-2035年)
- 临时用地复垦措施施工方案
- 2022年7月国家开放大学专科《法理学》期末纸质考试试题及答案
- 【甲子光年】2024自动驾驶行业报告-“端到端”渐行渐近
- 《城市道路照明设计标准 CJJ45-2015》
- 外研版(一年级起点)小学英语三年级下册期末测试卷(含答案及听力音频-材料)
- 辽宁省丹东市2023-2024学年八年级下学期7月期末历史试题(无答案)
- 2024年助产专科护士理论考核试题及答案
- 2024届云南省曲靖一中高一数学第二学期期末达标检测试题含解析
评论
0/150
提交评论