基本公式常识_第1页
基本公式常识_第2页
基本公式常识_第3页
基本公式常识_第4页
基本公式常识_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基本公式常识小学数学几何公式周长:长方形的周长 = (长+宽)2 = 2(a+b) = (a+b)2正方形的周长 = 边长4 = 4a圆的周长 = 圆周率直径 = d = 圆周率半径2 = 2 r面积长方形的面积 = 长宽 S = ab正方形的面积 = 边长边长 S = a三角形的面积=底高2 S=ah2平行四边形的面积=底高 S=ah梯形的面积=(上底+下底)高2 S=(a+b)h2直径=半径2 d=2r半径=直径2 r=d2圆的面积=圆周率半径半径三角形的面积=底高2 S=ah2正方形的面积=边长边长 S=aa长方形的面积=长宽 S=ab平行四边形的面积=底高 S=ah梯形的面积=(上底+

2、下底)高2 S=(a+b)h2内角和:三角形的内角和=180度长方体的体积=长宽高 V=abc长方体(或正方体)的体积=底面积高 V=Sh正方体的体积=棱长棱长棱长 V=aaa圆的面积=半径半径 S=r2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。S=ch=dh=2rh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。S=ch+2s=ch+2r2圆柱的体积:圆柱的体积等于底面积乘高。V=Sh圆锥的体积=1/3底面积高。V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子

3、,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。常见单位换算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1吨=1000千克 1千克=1000克= 1公斤=2市斤(5)1公顷=10000平方米 1亩=666.666平方米(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角 1角=10分 1元=100分(8)1世纪=100年 1年

4、=365天(平年)、366天(闰年) 1天=24小时 1小时=60分钟=3600秒 1分钟=60秒 1秒=1000毫秒初级数量关系公式1、每份数份数=总数 总数每份数=份数 总数份数=每份数2、1倍数倍数=几倍数 几倍数1倍数=倍数 几倍数倍数=1倍数3、速度时间=路程 路程速度=时间路程时间=速度4、单价数量=总价 总价单价=数量 总价数量=单价命题逻辑语义公式根据谓词逻辑的语义推导规则,语义应该具有一致性,就是对于一个命题逻辑语句集f,当且仅当至少存在这样一种解释i,f的一切元素在i之下都是真的,那么,f是语义一致的 。在命题逻辑语义学内,一个赋值不能同时把真和假给予某个命题原子式。在命题

5、逻辑语义学中,在同一解释下,一个集合不能既属于某个谓词的外延又不属于该谓词的外延。错误公式特征1,自称是科学的,但含糊不清,缺乏具数学公式体的度量衡。2,无法使用操作定义(例如,外人也可以检验的通用变量、属于、或对象)。3,无法满足简约原则,即当众多变量出现时,无法从最简约的方式求得答案。4,使用暧昧语言的语言,大量使用技术术语来使得文章看起来像是科学的。5,缺乏边界条件:严谨的科学理论在限定范围上定义清晰,明确指出预测现象在何时何地适用,何时何地不适用。欧氏平面几何线角1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已

6、知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补三角形15 定理 三角形任意两边的和大于第三边16 推论 三角形任意两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角

7、形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 边边边公理(sss) 有三边对应相等的两个三角形全等25 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等26 定理1 在角的平分线上的点到这个角的两边的距离相等27 定理2 到一个角的两边的距离相同的点,在这个角的平分线上28定理3 ABC中,作A的角平分线交BC于D,此时AB:AC=BD:CD29 角的平分线是到角的两边距离相等的所有点的集合30等腰

8、三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个

9、端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上44逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称45勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c246勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c

10、2 ,那么这个三角形是直角三角形47角角边(aas)有两条边和其中一边的对角分别对应相等的两个三角形全等四边形48定理 四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理 n边形的内角的和等于(n-2)18051推论 任意多边的外角和等于36052平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3

11、对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(ab)267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正

12、方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平

13、分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)2 s=lh83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质 如果a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质 如果a/b=c/d=m/n(b+d+n0),那么 (a+c+m)/(b+d+n)=a/b86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例87 推论 平行

14、于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三

15、角形相似(sss)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距

16、离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理 不在同一直线上的三点确定一个圆。110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

17、112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理 一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所 对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理 圆的内接四边

18、形的对角互补,并且任何一个外角都等于它的内对角121直线l和o相交 dr直线l和o相切 d=r直线l和o相离 dr122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理 弦切角等于它所夹的弧对的圆周角129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理 圆

19、内的两条相交弦,被交点分成的两条线段长的积相等131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135两圆外离 dr+r 两圆外切 d=r+r两圆相交 r-rdr+r(rr)两圆内切 d=r-r(rr) 两圆内含dr-r(rr)136定理 相交两圆的连心线垂直平分两圆的公共弦137定理 把圆分成n(n3):依次连结各分点所得的多边形是这个圆的内接

20、正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积sn=pnrn/2 p表示正n边形的周长142正三角形面积3a²/4( a表示边长)143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4144弧长计算公式:l=nr/180145扇形面积公式:s扇形=nr2/360=lr

21、/2146内公切线长= d-(r-r) 外公切线长= d-(r+r)147等腰三角形的两个底角相等148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合149如果一个三角形的两个角相等,那么这两个角所对的边也相等150三条边都相等的三角形叫做等边三角形151两边的平方的和等于第三边的平方的三角形是直角三角形152.直线L和O相交dr)三角诱导公式弧度制下的角的表示:sin(2k+)=sin (kZ)cos(2k+)=cos (kZ)tan(2k+)=tan (kZ)cot(2k+)=cot (kZ)sec(2k+)=sec (kZ)csc(2k+)=csc (kZ)角度制下的角的表示:

22、sin (+k360)=sin(kZ)cos(+k360)=cos(kZ)tan (+k360)=tan(kZ)cot(+k360)=cot (kZ)sec(+k360)=sec (kZ)csc(+k360)=csc (kZ)弧度制下的角的表示:sin(+)=sin (kZ)cos(+)=cos(kZ)tan(+)=tan(kZ)cot(+)=cot(kZ)sec(+)=sec(kZ)csc(+)=csc(kZ)角度制下的角的表示:sin(180+)=sin(kZ)cos(180+)=cos(kZ)tan(180+)=tan(kZ)cot(180+)=cot(kZ)sec(180+)=sec(

23、kZ)csc(180+)=csc(kZ)sin()=sin(kZ)cos()=cos(kZ)tan()=tan(kZ)cot()=cot(kZ)sec()=sec(kZ)csc)=csc(kZ)弧度制下的角的表示:sin()=sin(kZ)cos()=cos(kZ)tan()=tan(kZ)cot()=cot(kZ)sec()=sec(kZ)cot()=csc(kZ)角度制下的角的表示:sin(180)=sin(kZ)cos(180)=cos(kZ)tan(180)=tan(kZ)cot(180)=cot(kZ)sec(180)=sec(kZ)弧度制下的角的表示:sin(2)=sin(kZ)c

24、os(2)=cos(kZ)tan(2)=tan(kZ)cot(2)=cot(kZ)sec(2)=sec(kZ)csc(2)=csc(kZ)角度制下的角的表示:sin(360)=sin(kZ)cos(360)=cos(kZ)tan(360)=tan(kZ)cot(360)=cot(kZ)sec(360)=sec(kZ)csc(360)=csc(kZ)弧度制下的角的表示:sin(/2+)=cos(kZ)cos(/2+)=sin(kZ)tan(/2+)=cot(kZ)cot(/2+)=tan(kZ)sec(/2+)=csc(kZ)csc(/2+)=sec(kZ)角度制下的角的表示:sin(90+)=

25、cos(kZ)cos(90+)=sin(kZ)tan(90+)=cot(kZ)cot(90+)=tan(kZ)sec(90+)=csc(kZ)csc(90+)=sec(kZ)弧度制下的角的表示:sin(/2)=cos(kZ)cos(/2)=sin(kZ)tan(/2)=cot(kZ)cot(/2)=tan(kZ)sec(/2)=csc(kZ)csc(/2)=sec(kZ)角度制下的角的表示:sin (90)=cos(kZ)cos (90)=sin(kZ)tan (90)=cot(kZ)cot (90)=tan(kZ)sec (90)=csc(kZ)csc (90)=sec(kZ)弧度制下的角的

26、表示:sin(3/2+)=cos(kZ)cos(3/2+)=sin(kZ)tan(3/2+)=cot(kZ)cot(3/2+)=tan(kZ)sec(3/2+)=csc(kZ)csc(3/2+)=sec(kZ)角度制下的角的表示:sin(270+)=cos(kZ)cos(270+)=sin(kZ)tan(270+)=cot(kZ)cot(270+)=tan(kZ)sec(270+)=csc(kZ)csc(270+)=sec(kZ)弧度制下的角的表示:sin(3/2)=cos(kZ)cos(3/2)=sin(kZ)tan(3/2)=cot(kZ)cot(3/2)=tan(kZ)sec(3/2)=

27、sec(kZ)csc(3/2)=sec(kZ)角度制下的角的表示:sin(270)=cos(kZ)cos(270)=sin(kZ)tan(270)=cot(kZ)cot(270)=tan(kZ)sec(270)=csc(kZ)csc(270)=sec(kZ)和差角公式二倍角公式多倍角公式三倍角公式四倍角公式五倍角公式六倍角公式七倍角公式八倍角公式sin8A=-8*(cosA*sinA*(2*sinA2-1)*(-8*sinA2+8*sinA4+1)cos8A=1+(160*cosA4-256*cosA6+128*cosA8-32*cosA2)tan8A=-8*tanA*(-1+7*tanA2-

28、7*tanA4+tanA6)/(1-28*tanA2+70*tanA4-28*tanA6+tanA8)九倍角公式sin9A=(sinA*(-3+4*sinA2)*(64*sinA6-96*sinA4+36*sinA2-3)cos9A=(cosA*(-3+4*cosA2)*(64*cosA6-96*cosA4+36*cosA2-3)tan9A=tanA*(9-84*tanA2+126*tanA4-36*tanA6+tanA8)/(1-36*tanA2+126*tanA4-84*tanA6+9*tanA8)十倍角公式sin10A=2*(cosA*sinA*(4*sinA2+2*sinA-1)*(4

29、*sinA2-2*sinA-1)*(-20*sinA2+5+16*sinA4)cos10A=(-1+2*cosA2)*(256*cosA8-512*cosA6+304*cosA4-48*cosA2+1)tan10A=-2*tanA*(5-60*tanA2+126*tanA4-60*tanA6+5*tanA8)/(-1+45*tanA2-210*tanA4+210*tanA6-45*tanA8+tanA10)万能公式半角公式积化和差和差化积三角平方差公式辅助角公式正弦定理 (注: 其中 R 表示三角形的外接圆半径)余弦定理 (注:角A是边b和边c的夹角) (注:角B是边a和边c的夹角) (注:角

30、C是边a和边b的夹角)海伦-秦九韶公式已知三角形三边a,b,c,半周长p,则S= p(p - a)(p - b)(p - c)(p= (a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S= 1/4c2a2-(c2+a2-b2)/2)2 (“三斜求积” 南宋秦九韶) 注:秦九韶公式与海伦公式等价| a b 1 |S=1/2 * | c d 1 | e f

31、 1 |【| a b 1| c d 1| 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里| e f 1 |ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值, 如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式S=(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)/3其中Ma,Mb,Mc为三角形的中线长。反三角函数arcsin(-x)=-arcsinxarccos(-x)=-arccosxarctan(-x)=-ar

32、ctanxarccot(-x)=-arccotxarc sin x+arc cos x=/2arc tan x+arc cot x=/2解析几何解析方程圆的标准方程 注:(a,b)是圆心坐标)圆的一般方程 注:抛物线标准方程抛物线基本公式: (a0),置于平面直角坐标系中a 0时开口向上a 0时函数图像与y轴正方向相交c0)它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程圆的解析方程球体积=(4/3)(r3)面积=(r2)周长=2r =d圆的标准方程 注:(a,b)是圆心坐标圆的一般方程 注:椭圆周长计算公式按标准椭圆

33、方程:长半轴a,短半轴b 设 =(a-b)/(a+b)椭圆周长 L=(a+b)(1 + 2/4 + 4/64 + 6/256 + 258/16384 + .)简化:L1.5(a+b)- sqrt(ab)或 L(a+b)(64 - 34)/(64 - 162)椭圆面积计算公式椭圆面积公式: S=ab椭圆面积定理:椭圆的面积等于圆周率()乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。椭球物体 体积计算公式椭圆 的 长半径*短半径*高几何运算常用公式圆与立体图形圆的标准方程 (注:(a,b

34、)是圆心坐标)圆的一般方程 注:抛物线标准方程直棱柱侧面积 斜棱柱侧面积正棱锥侧面积 正棱台侧面积圆台侧面积 球的表面积圆柱侧面积 圆锥侧面积直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h正棱锥侧面积 正棱台侧面积球的表面积圆台侧面积 S=1/2(c+c)l=pi(R+r)圆柱侧面积 S=c*h=2*h圆锥侧面积 S=1/2*c*l=*r*l弧长公式 l=a*r a是圆心角的弧度数r 0扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长柱体体积公式 V=s*h圆柱体V=*r2h圆柱体公式v:体积 h:

35、高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长高(2)表面积=侧面积+底面积2(3)体积=底面积高(4)体积=侧面积2半径弧长公式l=a*r a是圆心角的弧度数r 0 扇形面积公式锥体体积公式 圆锥体体积公式斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体平面几何图形公式长方形的周长=(长+宽)2 c =2a+b正方形的周长=边长4 c=4a长方形的面积=长宽 s=ab正方形的面积=边长边长 s=a三角形的面积=底高2已知三角形底a,高h,则S=ah/2其他公式平行四边形的面积=底高梯形的面积=(上底+下底)高2直径=d=2r圆的周

36、长=d= 2r圆的面积= r长方体的表面积=(长宽+宽高+高长)2 s=2ab+bc+ca长方体的体积 =长宽高 v=abc正方体的表面积=棱长棱长6 s=6a正方体的体积=棱长棱长棱长 v=a圆柱的侧面积=底面圆的周长高 s=ch圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积高 v=sh圆锥的体积=底面积高3 v=sh3柱体体积=底面积高平面图形代数公式名称 符号 周长C和面积S正方形 a边长 C=4a S=a长方形 a和b边长 C=2(a+b) S=ab三角形 a,b,c三边长 其中s=(a+b+c)/2 S=ah/2ha边上的高 =ab/2sinCs周长的一半 =s(s-a)(s-

37、b)(s-c)1/2A,B,C内角 =a2sinBsinC/(2sinA)代数学一元二次方程一元二次方程的解: .根与系数的关系(韦达定理): .根的判别式 注:方程有两个相等的实根 注:方程有两个不等的实根注:方程 没有实根,有共轭复数根0 则方程有两个不相等的两实根.0 则方程有两共轭复数根d(没有实根)基本不等式:(a+b)/2或=根号ab因式分解a22ab+b2=(ab)2a33a2b+3ab2b3=(ab)3乘法公式把上面的因式分解公式左边和右边颠倒过来就是乘法公式。数列等差数列通项公式:ana1(n-1)d等差数列前n项和:Sn=n(A1+An)/2 =nA1+n(n-1)d/2等

38、比数列通项公式:an=a1*q(n1);等比数列前n项和:Sn=a1(1-qn)/(1-q) =(a1-a1qn)/(1-q) =a1/(1-q)-a1/(1-q)*qn (n1)某些数列前n项和:1+2+3+4+5+6+7+8+9+n=n(n+1)/21+3+5+7+9+11+13+15+(2n-1)=n2+4+6+8+10+12+14+(2n)=n(n+1)12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=(n(n+1)/2)21*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3三

39、角不等式-|a|a|a|a|b-bab|a|b-bab|a|-|b|a+b|a|+|b| |a|b-bab|a|-|b|a-b|a|+|b|z1|-|z2|-.-|zn|z1+z2+.+zn|z1|+|z2|+.+|zn|z1|-|z2|-.-|zn|z1-z2-.-zn|z1|+|z2|+.+|zn|z1|-|z2|-.-|zn|z1z2。.zn|z1|+|z2|+.+|zn|对数的基本性质如果a0,且a1,M0,N0,那么:1alog(a)(b)=b2log(a)(a)=13log(a)(MN)=log(a)(M)+log(a)(N);4log(a)(MN)=log(a)(M)-log(a

40、)(N);5log(a)(Mn)=nlog(a)(M)6log(a)M(1/n)=log(a)(M)/n概率与逻辑归纳概率公式定义:p(A)=m/n,全概率公式(贝页斯公式)某事件A是有B,C,D三种因素造成的,求这一事件发生的概率p(A)=p(A/B)p(B)+p(A/C)p(C)+p(A/D)p(D)其中p(A/B)叫条件概率,即:在B发生的情况下,A发生的概率伯努力公式是用以求某事件已经发生,求其是哪种因素的概率造成的好以上例中已知A事件发生了,用柏努力公式可以求得是B因素造成的概率是多大,C因素,D因素同样也求古典概型 P(A)=A包含的基本事件数/基本事件总数几何概型 P(A)=A面

41、积/总的面积条件概率 P(A|B)=Nab/Nb=P(AB)/P(B)=AB包含的基本事件数/B包含的基本事件数概率的性质性质1P()=0.性质2(有限可加性)当n个事件A1,An两两互不相容时:P(A1。.An)=P(A1)+.+P(An)性质3对于任意一个事件A:P(A)=1-P(非A)性质4当事件A,B满足A包含于B时:P(BnA)=P(B)-P(A),P(A)P(B)性质5对于任意一个事件A,P(A)1性质6对任意两个事件A和B,P(B-A)=P(B)-P(AB)性质7(加法公式)对任意两个事件A和B,P(AB)=P(A)+P(B)-P(AB)归纳法()第一数学归纳法:一般地,证明一个

42、与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立(2)假设当n=k(kn的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。(二)第二数学归纳法:第二数学归纳法原理是设有一个与自然数n有关的命题,如果:(1)当n=1回时,命题成立;(2)假设当nk时命题成立,则当n=k+1时,命题也成立。那么,命题对于一切自然数n来说都成立。(三)螺旋归纳法:螺旋归纳法是归纳法的一种变式,其结构如下:Pi和Qi是两组命题,如果:P1成立Pi成立=Qi成立那么Pi,Qi对所有自然数i成立利用第一数学归纳法容易证明螺旋归纳法是正确的排列组合阶乘当n为正整数时,n!=123n当n为

43、0时,0!=1排列从n个不同元素中取m个元素的所有排列个数, (m和n都是不小于0的整数,且mn)组合从n个不同的元素里,每次取出m个元素,不管以怎样的顺序并成一组,均称为组合。所有不同组合的种数 (m和n都是不小于0的整数,且mn)组合数的性质:对组合数 ,将n和k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则 为偶数;否则为奇数。整次数二项式定理(binomial theorem)二项式的通项所以,有微积分学极限的定义设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数(无论它多么小),总存在正数 ,使得当x满足不等式0|x-x。| 时,对应的函数值f

44、(x)都满足不等式:|f(x)-A|0) (log a x)=1/(xlna) ,(a0且a不等于1)(sinh(x)=cosh(x)(cosh(x)=sinh(x)(tanh(x)=sech2(x)(coth(x)=-csch2(x)(sech(x)=-sech(x)tanh(x)(csch(x)=-csch(x)coth(x)(arcsinh(x)=1/sqrt(x2+1)(arccosh(x)=1/sqrt(x2-1) (x1)(arctanh(x)=1/(1+x2) (|x|1)(chx)=shx, (ch为双曲余弦函数)(shx)=chx: (sh为双曲正弦函数)(3)导数的四则运算

45、法则:(uv)=uv(uv)=uv+uv(u/v)=(uv-uv)/ v2(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(链式法则):d fu(x)/dx=(d f/du)*(du/dx)。(上限h(x),下限g(x) f(x)dx=fh(x)h(x)- fg(x)g(x)洛必达法则(LHospital):是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。设(1)当xa时,函数f(x)及F(x)都趋于零(2)在点a的去心邻域内,f(x)及F(x)都存在且F(x)0(3)当xa时lim f(x)/F(x)存在(或为无穷大),那么

46、xa时 lim f(x)/F(x)=lim f(x)/F(x)。再设(1)当x时,函数f(x)及F(x)都趋于零(2)当|x|N时f(x)及F(x)都存在,且F(x)0(3)当x时lim f(x)/F(x)存在(或为无穷大),那么x时 lim f(x)/F(x)=lim f(x)/F(x)。利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:在着手求极限以前,首先要检查是否满足0/0或/型,否则滥用洛必达法则会出错。当不存在时(不包括情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限。比如利用泰勒公式求解。洛必达法则可连续多次使用,直到求出极限为止。洛必达法则是

47、求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等。曲率K = lim(s0) |/s|当曲线y=f(x)存在二阶导数时,K=|y|/(1+ y 2)(3/2);曲率半径R=1/K;不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。记作f(x)dx。其中叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。由定义可

48、知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数。基本公式:1)0dx=c;a dx=ax+c;2)xudx=(xu+1)/(u+1)+c;3)1/xdx=ln|x|+c4))axdx=(ax)/lna+c5)exdx=ex+c6)sinxdx=-cosx+c7)cosxdx=sinx+c8)1/(cosx)2dx=tanx+c9)1/(sinx)2dx=-cotx+c10)1/(1-x2)dx=arcsinx+c11)1/(1+x2)dx=arctanx+c12)1/(a2-x2)dx=(1/2a)ln|(a+x)/(a-x)|+c;13)secxdx=ln|secx+tanx|+c14)1/(a2+x2)dx=1/a*arctan(x/a)+c15)1/(a2-x2)dx=arcsin(x/a)+c;16) sec2 x dx=tanx+c;17) shx dx=chx+c;18) chx dx=shx+c;19) thx dx=ln(chx)+c;分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论