




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、lecture 10richard li, 200911. introduction2. implication of 6 design o 6 and yield rate o 6 design for a circuit block3. approaching 6 design o by changing parts value o by replacing a single part with multiple parts 4. monte carlo analysis o a bpf (band pass filter) o simulation with monte carlo an
2、alysis o sensitivity of parts on the parameter of performanceappendixes o fundamentals of random process o table of the normal distribution lecture 10 : manufacturability of a product designrichard chi-hsi li 李缉熙李缉熙cellular phone:(prc)email : lecture 10richard li, 20092 1. introductiont
3、he unique criterion to measure success or failure of product development is the manufacturability of a product. what is the manufacturability of a product? 1) high yield rate, including * satisfication of specifications; * good repetition or identity of product; * high reliability. 2) low cost, incl
4、uding the cost of * material and parts, * manpower, * manufactory maintenance and equipment. lecture 10richard li, 20093specificationssimulationsfabrication of samples by handtestingalttoppilot productionmassive productiontolerance analysisfigure 1 typical design procedures of a new product with acc
5、eptable manufacturability3rd stage : production2nd stage : pre-production 1st stage : r & dlecture 10richard li, 20094o 6 and yield rate(z)figure 2 definition of design tolerance toldesign and process capability 6usllsldesign tolerance = toldesignprocess capability = 6defects = 6.68%defects = 6.68%
6、-4 -3 -2 -1.5 -1 0 +1 +1.5 +2 +3 +4 z =(c-m)/mczlslusltoldesign)()(1lslzfuslzfdefects)()(2210222zzeerfdxzfx2.implications of 6 design lecture 10richard li, 20095figure 3 relationship between yield rate f(z) and design tolerance toldesign . 0 1 2 3 4 5 6 7 100%90%80%70%60%50%40%30%20%10% 0%yield rate
7、 f(z), %design tolerance toldesign , 99.74%95.44%68.26%38.30%86.64%98.76%0%99.98% table 1 relationship between the yield rate f(z) and the design tolerance toldesign design tolerance yield rate toldesign f(z) 0 0% 1 38.30% 2 68.26% 3 38.30% 4 86.64% 5 98.76% 6 99.74% 7 99.98%lecture 10richard li, 20
8、096o 6 design for a circuit blocka 6 circuit design is a design such that the yield rate of this circuit block in mass-production reaches 99.74% when 6 tolerance of all the parts applied in the circuit block is allowed. actually, the expected yield rate is 100%, although 99.74% is close to 100%.lect
9、ure 10richard li, 200973. approaching 6 design o by changing parts 6 value(z)usllsldesign tolerance process capability = 6defects = 6.68%defects = 6.68%usllsldefects = 0.13%defects = 0.13%process capability = 6 -4 -3 -2-1 0 +1 +2 +3 +4 -4 -3 -2 -1 0 +1 +2 +3 +4 design tolerance = toldesignz =(c-m)/z
10、 =(c-m)/design tolerance = toldesignusllslfigure 4 convert 3 design to 6 design by 50%reduction of standard deviation from to , that is, = /2 = original = /2lecture 10richard li, 20098o by replacing a single part with multiple parts 2 k6 k(a) one resistor of 2 k is replaced by three 6 k resistors in
11、 parallelm = 2k = 200 m = 6 k/3 = 120 4 pf16pf(b) one capacitor of 5 pf is replaced by four 16 pf capacitors in seriesm = 4 pf = 0.5 pf m = 16 pf/4 = 0.2 pf 7 nh(c) one inductor of 7 nh is replaced by two 14 nh inductors in parallel.m = 7 nh = 0.2 nh m = 14 nh/2 = 0.15 nh figure 5 one part is replac
12、ed by multi-parts.14 nh14 nh6 k6 k16pf16pf16pflecture 10richard li, 20099table 1 replacement of original 1 resistor, 1 capacitor, and 1 inductor by 3 resistors, 4 capacitors, and 2 inductors.original partmulti-partsm m .resistor 2 k200 6 k/3120 (1 resistor)(3 resistors in parallel)capacitor4 pf0.5 p
13、f16 pf/40.2 pf(1 capacitor)(4 capacitors in series)inductor7 nh0.2 nh14 nh/20.15 nh(1 inductor)(2 inductors in parallel)lecture 10richard li, 2009104. monte carlo analysiscvr1r1c2l3l2l1l1inl1l1outl2c3c4vr1(c1)vr1(c1)vr1(c1)vr1(c1)l1 : inductor 4.5 nh / 27 k / 0.2 pfl2 : inductor 8.8 nh / 27 k / 0.2
14、pfl3 : inductor 40.5 nh / 27 k / 0.2 pfc1 : capacitance of varactor 13.75 pf when cv=5vc2 : capacitor 2.4 pf c3 : capacitor 100 pfc4 : capacitor 10000 pfr1 : resistor 20 k cv : 5 vfigure 6 schematic of a uhf tunable filter o bptf (band pass tunable filter)lecture 10richard li, 200911 tunable fltlnam
15、ixerfltfigure 7 a tunable filter is added in the front end of the receiver for better selectivitylecture 10richard li, 200912frequencyfigure 8 frequency response of a tunable filter moved from low end to high end as the control voltage is increased(a) popular cases : bandwidth is changed as the freq
16、uency response is movedfrequency(b) ideal cases : bandwidth is kept unchanged as the frequency response is movedlecture 10richard li, 200913* main coupling : inductive coupling - an improper coupling unable a tunable filter tuned over a wide frequency tuning range . where q = quality factor of filte
17、r ;o = tuned central frequency ;bw = bandwidth o ;l = inductance of coupling inductor ;r = equivalent resonant resistance of tank circuit o .oorcbw40obwoorcbwq21rlbwqoo222orcbwlrbw2- in the case of inductor coupling,- in the case of capacitor coupling,lecture 10richard li, 200914from the above expre
18、ssions , it is found that1) in the case of capacitor-coupling, the bandwidth of the filter is dependent of the tuning frequency. it is increased as the tuning frequency is increased. 2) in the case of inductor-coupling, the bandwidth of the filter is an independent of the tuning frequency. the bandw
19、idth could be kept in an almost constant for a wide tuning frequency range. it is therefore concluded that the correct coupling element between the 2 tank circuits must be an inductor, but not a capacitor nor others. lecture 10richard li, 200915* second coupling : capacitive coupling - the capacitor
20、, c2, is the second coupling component between the two tank circuits; - it forms a “zero” at the imaginary frequency; - this “zero” traces the central frequency, o , over a wide frequency tuning range. lecture 10richard li, 200916* monte carlo analysisfigure 7.15 simulation page for monte-carlo anal
21、ysis (strictly speaking, it is not a gaussian but a normal distribution here.)fltport 1port 250 terminator50 terminatorc1 = cac2 = cbl1 = lal2 = lbl3 = lcequation ca = randvar gaussian, 13.75 pf 5%equation cb = randvar gaussian, 2.4 pf 5%equation la = randvar gaussian, 4.5 nh 7%equation lb = randvar
22、 gaussian, 8.8 nh 7%equation lc = randvar gaussian, 40.5 nh 7%figure 9 simulation page for monte-carlo analysis (strictly speaking, it is not a gaussian but a normal distribution here.) lecture 10richard li, 200917* frequency response without tolerance200 300 400 fo 500 600 700 -10s21, db0-20-40-60
23、10-50-70-80-90-30f , mhzil=1.76 dbimag. rej. =83.1 dbf o =435.43 mhzfigure 10 typical frequency response of tunable filter without tolerance lecture 10richard li, 200918* case #1 : bandwidth is too wide 200 300 400 fo 500 600 700 -10s21, db0-20-40 10-50-90-30 f , mhzil=1.76 dbimag. rej. =80.1 dbf o
24、=435.43 mhzfigure 11 frequency response of tunable filter with tolerance - bandwidth is too wide-70-80-60lecture 10richard li, 200919* case #3 : bandwidth is too narrows21, db 200 300 400 fo 500 600 700 -100-20-40-60 10-50-70-80-90-30f , mhzil=1.76 dbimag. rej. =80.1 dbf o =435.43 mhzfigure 12 frequ
25、ency response of tunable filter with tolerance - bandwidth is too narrowil=5.10 dblecture 10richard li, 200920* case #2 : bandwidth is appropriate 200 300 400 fo 500 600 700 -10s21, db0-20-40 10-50-70-80-90-30f , mhzil=1.76 dbimag. rej. =80.1 dbf o =435.43 mhz-60figure 13 frequency response of tunab
26、le filter with tolerance -bandwidth is appropriatelecture 10richard li, 200921* yield rate & its histogram of il less than 2.5 db ( for case #2 )yield rate, % 100.00-2.16 -1.71il, db350%figure 14 display of insertion loss histogram and yield rate for il60 db lecture 10richard li, 200924* image rejec
27、tion performance of parts with tolerance ( for case #2 )-64-8413.2 142imag.rej., dbc1 , pf-64-842.3 2.5c2 , pfimag.rej., db-64-848.3 9.3l2 , nhimag.rej., dbl1 , nh-64-844.2 4.8imag.rej., db-64-8438.1 42.6l3 , nhimag.rej., dbnote : capacitors are more sensitive to the image rejection than inductors !
28、figure 17 the effect of individual parts value on the image rejection lecture 10richard li, 200925o a bpf (band pass filter)c1 l c3 l c4 l c3 l c1port 1inc2 c2 c2 c2 c5 c2 c2 c2figure 18 bpf (band pass filter), 403 470 mhz. l = 20 nh c1 = 3.9 pf c2 = 4.3 pf c3 = 7.5 pf c4 = 9.1 pf c5 = 3.9 pfport 2o
29、utlecture 10richard li, 200926figure 19 frequency response of band pass filter f = 403 470 mhz 200 300 400 fo 500 600 700 -10s21, db-20-400 0-50-30f , mhzil= -1.05 dbf o =435.21 mhz-70-80-60-90-100lecture 10richard li, 200927vnswoeufigure 20 s11 of band pass filter f = 403 470 mhz 200mhz403mhz470mhz
30、700mhzlecture 10richard li, 200928* simulation with monte carlo analysis bpf(band pass filter)403 = 470 mhzport 1port 250 terminator50 terminatorl = lac1 = cac2 = cbc3 = ccc4 = cdc5 = ceequation la = randvar gaussian, 20 nh 7%equation ca = randvar gaussian, 3.9 pf 5%equation cb = randvar gaussian, 4
31、.3 pf 5%equation cc = randvar gaussian, 7.5 pf5%equation cd = randvar gaussian, 9.1 pf 5%equation ce = randvar gaussian, 3.9 pf 5%figure 21 simulation page for monte-carlo analysis. number of iteration = 50.lecture 10richard li, 200929figure 22 frequency response of band pass filter, 403 470 mhz, nu
32、mber of iteration = 50 200 300 400 fo 500 600 700 -10s21, db-20-400 0-50-30il= -2.30 db-70-80-60-90-100f , mhzf o =435.21 mhzlecture 10richard li, 200930swoevnu200mhz403mhz470mhz700mhzfigure 23 s11 of band pass filter, 403 470 mhz number of iteration = 50lecture 10richard li, 200931yield rate, % 100
33、.00-2.3 -0.8il, db0figure 24 display of insertion loss histogram and yield rate for |il| 2.5 db (iteration number = 50) number in iteration2010 0 table 2 distribution of iteration number vs. insertion loss insertion loss, db -2.30 to -2.05 -2.05 to -1.80 -1.80 to -1.55 -1.55 to -1.30 -1.30 to -1.05
34、-1.05 to -0.8number in iteration 4 12 1 20 12 1lecture 10richard li, 200932-0.8-2.318.86 20 20.14il, dbl=la , nh(il vs. l) tolerance of l : 7%-0.8-2.34.085 4.3 4.515il, dbc2=cb , pf(il vs. c2) tolerance of c2 : 5%-0.8-2.33.705 3.9 4.095 il, dbc1=ca , pf(il vs. c1) tolerance of c1 : 5%figure 25 sensi
35、tivity of individual parts value on the insertion loss-0.8-2.3il, dbc5=ce , pf3.705 3.9 4.095(il vs. c5) tolerance of c5 : 5%-0.8-2.38.645 9.1 9.555il, dbc4=cd , pf(il vs. c4) tolerance of c4 : 5%-0.8-2.37.125 7.5 7.875 il, dbc3=cc , pf(il vs. c3 ) tolerance of c3 : 5%lecture 10richard li, 200933-0.
36、8-2.38.645 9.1 9.555il, dbc4=cd , pffigure 26 sensitivity of c4 on the insertion loss after its tolerance of 5% is replaced by 7%(il vs. c4) tolerance of c4 : 7%lecture 10richard li, 200934a.1 fundamentals of random processappendixesrelative number of resistorsfigure a.1 histogram of relative number
37、 of resistors versus the value of resistor 0.800k 0.850k 0.900k 0.950k 1.000k 1.050k 1.100k 1.105k 1.120k r, ohmlecture 10richard li, 200935 ohms , 1000m%52remmrtoliilativeiir2 ohms .mrz2222)(xexdxdxxzfzezx020222)()(* gaussian probability function , * average value :* relative tolerance :* variance
38、or standard deviation ri , * sample value :where* gaussion distribution :lecture 10richard li, 200936 -4 -3 -2 -1 0 +1 +2 +3 +4 z =(r-m)/m-4 m-3 m-2 m-1 m m+1 m+2 m+3 m+4 r, ohm(z)figure a.2 distribution of the random variable, r, is a normal probability function or a gaussian distribution0.39890.24
39、200.05400.00440.0001lecture 10richard li, 200937* tolerance and normal distribution (z)figure a.3 integral of (z) from 0 to z or from m to m+z . -4 -3 -2 -1 0 +1 z +2 +3 +4 z =(r-m)/m-4 m-3 m-2 m-1 m m+1 m+z m+2 m+3 m+4 r, ohmlecture 10richard li, 200938* six sigma and 100% yield rategaussian distri
40、bution :dxzfzemx022222)(where m = average of the variable x ; = square root of the variable x.normal probability function is a gaussian distribution function when :m = 0 , and = 1 .)()(2210222zzeerfdxzfxdyexerfxy022)(lecture 10richard li, 200939figure a.4 at each interval, z, the appearing percentag
41、e of a random variable with a normal distribution when the interval is-1 z +1 ,then the area isf(z) = 68.26%,when the interval is-2 z +2 ,then the area isf(z) = 95.44%,when the interval is-3 z +3 ,then the area isf(z) = 99.74%,when the interval isz +3,then the area isf(z) = 0.26%, (z)0.13%0.13%34.13
42、%34.13%13.59%13.59%2.15%2.15% -4 -3 -2 -1 0 +1 +2 +3 +4 z =(r-m)/m-4 m-3 m-2 m-1 m m+1 m+2 m+3 m+4 r, ohmlecture 10richard li, 200940* 6, cp, and cpkfigure a.5 the various terminologies of a process with normal distribution musllsldesign tolerance process capability = 6 defectsdefects -4 -3 -2 -1 0
43、+1 +2 +3 +4 z =(r-m)/m-4 m-3 m-2 m-1 m m+1 m+2 m+3 m+4 r, ohmusl = upper specification limit, , lsl = lower specification limit, .lecture 10richard li, 200941lslusltolerance)()(1lslzfuslzfdefects6_pr_lsluslcapabilityocesstolerancedesigncpcapability index, cp , is defined as)1(kccppk2/lsluslmmkwhere
44、m = nominal process mean, , m = actual process mean, .adjusted capability index, cpk, is defined aswhere usl = upper specification limit, , lsl = lower specification limit, .lecture 10richard li, 200942example #102/lsluslmmk%56. 5%72.47*21)2(21zfdefects6667. 0646lsluslcp6667. 0)01 (6667. 01kccppkfig
45、ure a.6 a normal distribution with m=10, =0.01, usl-lsl=4, m=m .specification mean, m process mean, m usllsl2.28%2.28% -4 -3 -2 -1 0 +1 +2 +3 +4 z =(r-m)/m-4 m-3 m-2 m-1 m m+1 m+2 m+3 m+4 r, ohmlecture 10richard li, 200943example #202/lsluslmmk%26. 0%87.49*21)3(21zfdefects0000.1666lsluslcp0000. 1)01
46、 (0000. 11kccppkfigure a.7 a normal distribution with m=10, =0.01, usl-lsl=6, m=m .usllsl0.13%0.13%specification mean, m process mean, m -4 -3 -2 -1 0 +1 +2 +3 +4 z =(r-m)/m-4 m-3 m-2 m-1 m m+1 m+2 m+3 m+4 r, ohmlecture 10richard li, 200944example #3 5000. 02/412/lsluslmmk%16%87.49%13.341)()3(1zfzfd
47、efects6667.0646lsluslcp3334. 0)5 . 01 (6667. 01kccppkfigure a.8 a normal distribution with m=10, =0.01, usl-lsl=4, m=9.99 .specification mean, m process mean, m usllsl0.13%15.87% -4 -3 -2 -1 0 +1 +2 +3 +4 z =(r-m)/m-4 m-3 m-2 m-1 m m+1 m+2 m+3 m+4 r, ohmlecture 10richard li, 200945example #412/422/l
48、sluslmmk%50%50%01)4()0(1zfzfdefects6667.0646lsluslcp0) 11 (0000. 11kccppkfigure a.9 a normal distribution with m=10, =0.01, usl-lsl=4, m=10.02 .usllsl50%specification mean, m process mean, m -4 -3 -2 -1 0 +1 +2 +3 +4 z =(r-m)/m-4 m-3 m-2 m-1 m m+1 m+2 m+3 m+4 r, ohmlecture 10richard li, 200946* yiel
49、d rate and dpu pdnndpuwhere nd = number of defects found at all acceptance points,np = number of units processed.lecture 10richard li, 200947 !xexpx* poisson distributionpoisson distribution, the occurrence of random defects in manufactured product can be statistically predicted. poisson distributio
50、n is a mathematic model to describe the probability distribution of the arrived entities. for instance, in one hour lunch time, say, statistically from 12.00 to 13.00 oclock, the number of customers getting into a restaurant for lunch. assuming that the average number of customers is , and the rando
51、m number of arrivals at the same time interval is x, then the probability of the random arrival number, px, islecture 10richard li, 200948 dpudpueedpup!000dpuefty !xedpuxpdpux and, in generalthis is the relationship between the defect-free probability and the average dpu. the first time yield, fty,
52、can be approximated by the formula:lecture 10richard li, 200949countpartsdpupartppmratedefectpartppm_/_/ nftydftycftybftyaftyftyrolled*.*regardless of process flow or order, the rolled yield can be calculated from the summation of the dpu values in all the steps.if a process with n steps, 1,2,3,4.n,
53、 and the value of dpu in each step is a, b, c, d, n respectively. then, in terms of the formula, the first time yield, fty, is e-a, e-b, e-c, e-de-n correspondingly. the fist time rolled yield for the process isndcbarolledefty.lecture 10richard li, 200950example : rolled yield for a printed circuit
54、board. assuming that there are totally 3 steps : parts placed, parts soldered, and parts assembly. a) part placement = 300 ppm, it means 300 parts failed in 1million parts.b) part assembly defect rate = 800 ppm, it means 800 assembly-components failed in 1 million parts.c) solder defect rate = 200 p
55、pm, it means 200 connected points failed in 1million parts.*) on average, there are 2.3 connections for each part. table a.1 calculated fty for a printed circuit board assembly by 3 process stepsparts parts parts # of parts placementassemblysoldered totalrolled ftyabc a+b+ce-(a+b+c) 1000.0300.0800.0
56、46 0.15685.6%5000.1500.4000.230 0.78045.8%10000.3000.8000.460 1.56021.0% lecture 10richard li, 200951a.2 table of the normal distriution z 01 234 5 6 7 8 90.0.0000.0040.0080.0120.0160.0199.0239.0279.0319.03590.1.0398.0438.0478.0517.0557.0596.0636.0675.0714.07540.2.0793.0832.0871.0910.0948.0987.1026.1064.1103.11410.3.1179.1217.1255.1293.1331.1368.1406.1443.1480.15170.4.1554.1591.1628.1664.1700.1736.1772.1808.1844.18790.5.1915.1950.1985.2019.2054.2088.2123.2157.2190.22240.6.2258.229
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药店铺货合同协议书
- 代发合同协议书模板图片
- 2025办公室装修设计合同范本,办公室装修设计合同样本
- 富士康合同解除协议书
- 四级软件测试工程师考试知识体系试题及答案
- 数学考前试题及答案大全
- 生产计划面试题目及答案
- 射频识别技术在嵌入式的实现试题及答案
- 2025年软件设计师学科分类试题及答案
- 网络工程师备考经验分享试题及答案
- (完整word版)电梯管理证复审申请表
- 材料科学基础基础知识点总结
- 医学伦理审查申请表1
- 数控铣工图纸(60份)(共60页)
- 香樟栽植施工方案
- 惠州市出租车驾驶员从业资格区域科目考试题库(含答案)
- 加工设备工时单价表
- 高脂血症药物治疗ppt课件
- 高层建筑等电位联结安装技术分析探讨
- 模型预测控制(课堂PPT)
- OQC出货检验规范及方法
评论
0/150
提交评论