有理数与无理数_第1页
有理数与无理数_第2页
有理数与无理数_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-作者xxxx-日期xxxx有理数与无理数【精品文档】与无理数主备:陈秀珍 审核: 日期:2012-9-1学习目标:1理解有理数的意义;知道无理数是客观存在的,了解无理数的概念。2.会判断一个数是有理数还是无理数。经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感。教学重点:区分有理数与无理数,知道无理数是客观存在的。感受夹逼法,估算无理数的大小。.教学难点:会判断一个数是有理数还是无理数,体会“无限”的过程。教学过程:一自主学习(导学部分)1、我们上了六多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?在小学我们学过自然数、小数、分数.,在初一我们还学过负数。我

2、们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充了范围,从形式上来看,我们学过的一部分数又可以分为整数和分数。我们能够把整数写成分数的形式吗?如:5,-4,0可以吗?可以!如5= ,-4= ,0= 我们把可以化为分数形式“mn(m、n是整数,n0)”的数叫做有理数;2、想一想:小学里我们还学过有限小数和循环小数,它们是有理数吗?有限小数如0.3,-3.11能化成分数吗?它们是有理数吗?0.3= ,-3.11= ,它们是有理数。请将1 /3,4/15 ,2/9写成小数的形式。1/3=0.333.,4/15=0.26666.,2 /9=0.2222. 这些是什么小

3、数?循环小数,反之循环小数也能化为分数的形式,它们也是有理数! 循环小数如何化为分数可以一起学习书p17、读一读二合作、探究、展示有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1. 议一议:有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形。(1)设大正方形的边长为a,a满足什么条件?(2)a可能是整数吗?说说你的理由。(3)a可能是分数吗?说说你的理由(1)a是正方形的边长,所以a肯定是正数.因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.(2)“12=1,22=4,32=9,.越来越大,所以a不

4、可能是整数”, 因为2个正方形的面积分别为1,1,而面积又等于边长的平方,所以面积大的正方形边长就大,因为a2大于1且a2小于4,所以a大致为1点几,即可判断出a 是大于1且小于2的数。(3)因为 , 两个相同分数因数的乘积都为分数,所以a不可能是分数.也可按书p16、问题6选取无限多大于1且小于2的两个相同分数的乘积来考查。体会“无限”的过程,认可找不到一个数的平方等于2,即a 也不可能是分数。在等式a2=2中,a既不是整数,也不是分数,也就是不能写成 mn 的形式,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2、算一算:边长a面积s1a21s41.1.1.1.(1) a肯定比1大而比2小,可以表示为1a2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比大且比小,可以写成1.4a1.5,所以a是1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论