




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第1节变化率与导数、导数的计算节变化率与导数、导数的计算知 识 梳 理1.函数yf(x)在xx0处的导数2.函数yf(x)的导函数(2)几何意义:函数f(x)在点x0处的导数f(x0)的几何意义是在曲线yf(x)上点(x0,f(x0)处的切线的_.相应地,切线方程为_.斜率yy0f(x0)(xx0)3.基本初等函数的导数公式基本初等函数导函数f(x)c(c为常数)f(x)_f(x)x(q*)f(x)_f(x)sin xf(x)_f(x)cos xf(x)_f(x)exf(x)_f(x)ax(a0,a1)f(x)_f(x)ln xf(x)_f(x)logax(a0,a1)f(x)_0 x1co
2、s xsin xexaxln a4.导数的运算法则f(x)g(x)f(x)g(x)f(x)g(x)5.复合函数的导数复合函数yf(g(x)的导数和函数yf(u),ug(x)的导数间的关系为yxyuux.常用结论与微点提醒1.f(x0)代表函数f(x)在xx0处的导数值;(f(x0)是函数值f(x0)的导数,且(f(x0)0.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数yf(x)的导数f(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f(x)|反映了变化的快慢,|f(x)|越大,曲线在这点处的切线越“陡”.诊 断 自 测
3、1.判断下列结论正误(在括号内打“”或“”)(1)f(x0)是函数yf(x)在xx0附近的平均变化率.()(2)函数f(x)sin(x)的导数f(x)cos x.()(3)求f(x0)时,可先求f(x0),再求f(x0).()(4)曲线yf(x)在某点处的切线与曲线yf(x)过某点的切线意义是相同的.()解析(1)f(x0)表示yf(x)在xx0处的瞬时变化率,(1)错.(2)f(x)sin(x)sin x,则f(x)cos x,(2)错.(3)求f(x0)时,应先求f(x),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某
4、点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.答案(1)(2)(3)(4)a.2xy10 b.x2y20c.2xy10 d.x2y20答案a3.(老教材选修22p3问题2改编)在高台跳水运动中,t s时运动员相对于水面的高度(单位:m)是h(t)4.9t26.5t10,则运动员的速度v_ m/s,加速度a_ m/s2.解析vh(t)9.8t6.5,av(t)9.8.答案9.8t6.59.84.(2019全国卷)曲线y2sin xcos x在点(,1)处的切线方程为()a.xy10 b.2xy210c.2xy2
5、10 d.xy10解析设yf(x)2sin xcos x,则f(x)2cos xsin x,曲线在点(,1)处的切线斜率kf()2,故切线方程为y12(x),即2xy210.答案c5.(2019新乡模拟)设f(x)ln(32x)cos 2x,则f(0)_.6.(2019全国卷)曲线y3(x2x)ex在点(0,0)处的切线方程为_.解析y3(2x1)ex3(x2x)ex3ex(x23x1),所以曲线在点(0,0)处的切线的斜率ke033,所以所求切线方程为y3x.答案y3x考点一导数的运算多维探究角度1根据求导法则求函数的导数【例11】 求下列函数的导数:角度2抽象函数的导数【例12】 已知函数
6、f(x)的导函数为f(x),且满足关系式f(x)x23xf(2)ln x,则f(1)_.解析因为f(x)x23xf(2)ln x,规律方法1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解.3.复合函数求导,应由外到内逐层求导,必要时要进行换元.考点二导数的几何意义a.xy20 b.2xy30c.3xy20 d.3xy40(2)(2019江苏卷)在平面直角坐标系xoy中,点a在曲线yln x上,且该曲线在点a处的切线经过点(e,1)(e为自然对数的底数),则点a的坐标是_.答案(1)d(2)(e,1)规律
7、方法1.求曲线在点p(x0,y0)处的切线,则表明p点是切点,只需求出函数在p处的导数,然后利用点斜式写出切线方程,若在该点p处的导数不存在,则切线垂直于x轴,切线方程为xx0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点不知道,要设出切点,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.【训练2】 (1)(2018全国卷)设函数f(x)x3(a1)x2ax.若f(x)为奇函数,则曲线 yf(x)在点(0,0)处的切线方程为()解析(1)因为函数f(x)x3(a1)x2ax为奇函数,所以a10,则a1,所以f(x)x3x.f(x)3x21,则f(0)1.所以
8、曲线yf(x)在点(0,0)处的切线方程为yx.(2)函数yex的导函数为yex,曲线yex在点(0,1)处的切线的斜率k1e01.又x00,x01.考点三导数几何意义的应用【例3】 (1)(2019全国卷)已知曲线yaexxln x在点(1,ae)处的切线方程为y2xb,则()a.ae,b1 b.ae,b1c.ae1,b1 d.ae1,b1(2)(2019泉州质检)若曲线yx2与yaln x(a0)存在公共切线,则实数a的取值范围是()a.(0,2e b.(0,ec.(,0)(0,2e d.(,0)(0,e解析(1)yaexln x1,ky|x1ae1,切线方程为yae(ae1)(x1),即y(ae1)x1.又已知切线方程为y2xb,设g(x)4x24x2ln x,g(x)4x8xln x,又x时,g(x);当x0时,g(x)0.所以a的取值范围为(,0)(0,2e.答案(1)d(2)c规律方法1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:(1)切点处的导数是切线的斜率;(2)切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025清包工装修合同范本
- 2025年度产品采购合同范本
- 2025年农业生产设备租赁合同范本
- 约定离婚赔偿协议
- 2025合作合同 电子产品收益分配协议书
- 2025灯光设备安装合同样本
- 不尽赡养义务协议书
- 西安邮电大学《工程招标投标与合同管理》2023-2024学年第二学期期末试卷
- 中国科学院大学《现代土木工程理论新进展》2023-2024学年第二学期期末试卷
- 四川文化传媒职业学院《神奇的普洱茶》2023-2024学年第一学期期末试卷
- 纵隔肿瘤护理查房
- 眼镜店销售培训课件
- 中小学学校落实中央八项规定自查报告
- 宜宾市属国有企业人力资源中心宜宾临港投资建设集团有限公司下属子公司2025年第一批项目制员工公开招聘笔试参考题库附带答案详解
- 2025年山东鲁泰控股集团有限公司下属驻陕西煤矿企业招聘(150人)笔试参考题库附带答案详解
- 2025届上海市浦东新区高三二模英语试卷(含答案)
- 2024-2025学年高一政治统编版下学期期中考试测试卷B卷(含解析)
- 内蒙古自治区呼和浩特市2025届高三第一次模拟考试物理答案
- 仓库管理奖惩制度
- 中级银行管理-2025中级银行从业资格考试《银行管理》点睛提分卷1
- 乳腺癌诊治指南与规范(2024年版)解读
评论
0/150
提交评论