版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、选择题1(2015恩施州)(3分)如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A0B2C数D学考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”故选:A点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题2.(2015黄冈)(3 分)如图所示,
2、该几何体的俯视图是( )考点:简单组合体的三视图 分析:根据从上面看得到的视图是俯视图,可得答案 解答:解:从上面看是一个正方形,在正方形的左下角有一个小正方形 故选:B 点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图 3(2015黄石)(3分)下列四个立体图形中,左视图为矩形的是()ABCD考点:简单几何体的三视图.分析:根据左视图是分别从物体左面看,所得到的图形,即可解答解答:解:长方体左视图为矩形;球左视图为圆;圆锥左视图为三角形;圆柱左视图为矩形;因此左视图为矩形的有故选:B点评:本题考查了几何体的三种视图,掌握定义是关键注意所有的看到的棱都应表现在三视图中4(2015
3、黄石)(3分)在下列艺术字中既是轴对称图形又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解解答:解:A、是轴对称图形,不是中心对称图形故错误;B、是轴对称图形,不是中心对称图形故错误;C、不是轴对称图形,也不是中心对称图形故错误;D、是轴对称图形,也是中心对称图形故正确故选D点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5(2015黄石)(3分)在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥
4、(AB和AE重合),则此圆锥的底面半径为()www-2-1-cnjy-comA4B16C4D8考点:圆锥的计算.分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解解答:解:设圆锥的底面圆半径为r,依题意,得2r=,解得r=4故小圆锥的底面半径为4;故选A点评:本题考查了圆锥的计算圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长6(2015荆州)(3分)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是() ABCD考点:剪纸问题分析:根据题意直接动手操作得出即可解答:解:找一
5、张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A点评:本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便7(2015潜江)(3分)如图所示的几何体,其左视图是()ABCD考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案解答:解:从左边看是一个矩形的左上角去掉了一个小矩形, 故选:C点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图8(2015潜江)(3分)已知一块圆心角为300的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A24cmB48cmC96cmD19
6、2cm考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得解答:解:设这个扇形铁皮的半径为rcm,由题意得=80, 解得r=48 故这个扇形铁皮的半径为48cm, 故选B点评:本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个 等量关系,然后由扇形的弧长公式和圆的周长公式求值9(2015潜江)(3分)在下面的网格图中,每个小正方形的边长均为1,ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(1,1),(1,2),将ABC绕点C顺时针旋转90,则点A的对应点的坐标为()www.21-cn-A(4,1)B(4,1)C(5,1)D(5,1)考点:坐标与图形变化
7、-旋转.专题:几何变换分析:先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出ABC绕点C顺时 针旋转90后点A的对应点的A,然后写出点A的坐标即可解答:解:如图,A点坐标为(0,2), 将ABC绕点C顺时针旋转90,则点A的对应点的A的坐标为(5,1) 故选D点评:本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质 来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,18010(2015武汉)(3分)如图,是由一个圆柱体和一个长方体组成的几何体其主视图是()ABCD解:从正面看下面是一个比较长的矩形,上面是一个比较宽的矩形故选:B11(2015
8、武汉)(3分)如图,ABC,EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M当EFG绕点D旋转时,线段BM长的最小值是()2-1-c-n-j-yA2B+1CD1解:连接AD、DG、BO、OM,如图ABC,EFG均是边长为2的等边三角形,点D是边BC、EF的中点,ADBC,GDEF,DA=DG,DC=DF,ADG=90CDG=FDC,=,DAGDCF,DAG=DCFA、D、C、M四点共圆根据两点之间线段最短可得:BOBM+OM,即BMBOOM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO=,OM=AC=1,则BM=BOOM=1故选D12(2015咸宁
9、)(3分)一个几何体的三视图如图所示,则这个几何体是()A圆柱B圆锥C长方体D正方体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答:解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱故选A点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状13(2015孝感)(3分)如图是一个几何体的三视图,则这个几何体是A正方体B长方体C三棱柱 D三棱锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体
10、正面、左面和上面看,所 得到的图形解答:解:根据主视图和左视图为矩形是柱体,根据俯视图是正方形可 判断出这个几何体应该是长方体 故选:B点评:本题考查由三视图判断几何体,由三视图想象几何体的形状,首 先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状, 然后综合起来考虑整体形状14(2015宜昌)(3分)下列剪纸图案中,既是轴对称图形,又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解解答:解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两
11、部分能够重合;即不满足轴对称图形的定义是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误故选:A点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合15(2015宜昌)(3分)下列图形中可以作为一个三棱柱的展开图的是()ABCD考点:几何体的展开图.分析:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形解答:解:三棱柱展
12、开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图故选:A点评:此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧二、填空题1(2015恩施州)(3分)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于5【来源:21cnj*y.co*m】考点:弧长的计算;旋转的性质.分析:根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可解答:解:由图形可知,圆心先向前走OO1的长度即圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的
13、长度为:25+25=5,故答案为:5点评:本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度2. (2015黄冈)(3 分)如图所示的扇形是一个圆锥的侧面展开图, 若AOB=120 , 弧AB 的长为12cm, 则该圆锥的侧面积为_cm2.21cnjy考点:圆锥的计算 分析:首先求得扇形的母线长,然后求得扇形的面积即可 解答:解:设AO=B0=R , AOB=120,弧AB 的长为12cm , =12, 解得:R=18 , 圆锥的侧面积为 lR= 1218=108, 故答案为:108 点评:本题考查了圆锥的计算,解题的关键是牢记圆锥的有关计算公式,难度不大
14、 3(2015黄石)(3分)现有多个全等直角三角形,先取三个拼成如图1所示的形状,R为DE的中点,BR分别交AC,CD于P,Q,易得BP:QR:QR=3:1:2(1)若取四个直角三角形拼成如图2所示的形状,S为EF的中点,BS分别交AC,CD,DE于P,Q,R,则BP:PQ:QR:RS=4:1:3:2(2)若取五个直角三角形拼成如图3所示的形状,T为FG的中点,BT分别交AC,CD,DE,EF于P,Q,R,S,则BP:PQ:QR:RS:ST=5:1:4:2:3考点:相似三角形的判定与性质.分析:(1)首先证明BCQBES,从而可求得CQ=,DQ=EF,然后证明BAPQDR得到BP:QR=4:3
15、从而可知:BP:PQ:QR=4:1:3,然后由DQSE,可知:QR:RS=DQ:SE=3:2,从而可求得BP:PQ:QR:RS=4:1:3:2;(2)由ACDEGF,可知:BPCBERBTG,能够求得:AP:DR:FT=5:4:3,然后再证明BAPQDRSFT,求得BP:QR:ST=AP:DR:FT=5:4:3,因为BP:QR:RT=1:1:1,所以可求得:BP:PQ:QR:RS:ST=5:1:4:2:3解答:解:(1)四个直角三角形是全等三角形,AB=EF=CD,ABEFCD,BC=CE,ACDE,BP:PR=BC:CE=1,CDEF,BCQBES又BC=CECQ=,DQ=ABCD,ABP=
16、DQR又BAP=QDR,BAPQDRBP:QR=4:3BP:PQ:QR=4:1:3,DQSE,QR:RS=DQ:SE=3:2,BP:PQ:QR:RS=4:1:3:2故答案为:4:1:3:2;(2)五个直角三角形是全等直角三角形AB=CD=EF,ABCDEF,AC=DE=GF,ACDEGF,BC=CE=EG,BP=PR=RT,ACDEGF,BPCBERBTG,PC=,RE=FG,AP=,DR=,FT=AP:DR:FT=5:4:3ACDEGF,BPA=QRD=STF又BAP=QDR=SFT,BAPQDRSFTBP:QR:ST=AP:DR:FT=5:4:3又BP:QR:RT=1:1:1,BP:PQ:
17、QR:RS:ST=5:(54):4:(53):3=5:1:4:2:3故答案为:5:1:4:2:3点评:本题主要考查的是相似三角形的判定和性质,找出图中的相似三角形,求得相应线段之间的比例关系是解题的关键4(2015荆州)(3分)如图,矩形ABCD中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把ABC沿着AC对折得到ABC,AB交y轴于D点,则B点的坐标为(,)考点:翻折变换(折叠问题);坐标与图形性质分析:作BEx轴,设OD=x,在RtAOD中,根据勾股定理列方程,再由ADOABE, 求出BE和OE解答:解:作BEx轴, 易证AD=CD, 设OD=x,AD=5x, 在RtAOD中,根据
18、勾股定理列方程得:22+x2=(5x)2, 解得:x=2.1, AD=2.9, ODBE, ADOABE, , , 解得:BE=, AE=, OE=2= B(,) 故答案为:(,)点评:本题主要考查了折叠的性质、相似三角形的判定与性质、勾股定理,根据勾股定理列 方程求出OD是解决问题的关键5(2015荆州)(3分)如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为3612cm2考点:展开图折叠成几何体分析:这个棱柱的侧面展开正好是一个长方形,长为6,宽为6减去两个六边形的高,再 用长方形的面积公式计算即可求得答案解答:解:将一张边长为6的正方
19、形纸片按虚线裁剪后,恰好围成一个底面是正六边形的 棱柱, 这个正六边形的底面边长为1,高为, 侧面积为长为6,宽为62的长方形, 面积为:6(62)=3612 故答案为:3612点评:此题主要考查了正方形的性质、矩形的性质以及剪纸问题的应用此题难度不大,注 意动手操作拼出图形,并能正确进行计算是解答本题的关键6(2015潜江)(3分)如图,在RtABC中,ACB=90,点D在AB边上,将CBD沿CD折叠,使点B恰好落在AC边上的点E处若A=26,则CDE=71考点:翻折变换(折叠问题).分析:根据三角形内角和定理求出B,根据折叠求出ECD和CED,根据三角形内角和 定理求出即可解答:解:在Rt
20、ABC中,ACB=90,A=26, B=64, 将CBD沿CD折叠,使点B恰好落在AC边上的点E处,ACB=90, BCD=ECD=45,CED=B=64, CDE=180ECDCED=71, 故答案为:71点评:本题考查了折叠的性质,三角形内角和定理的应用,能求出CED和ECD的度数 是解此题的关键,注意:折叠后的两个图形全等7(2015随州)(3分)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3【版权所有:21教育】考点:由三视图判断几何体.分析:根据三视图我们可以得出这个几何体应该是个长方体,它的体积应该是324=24cm3解答:解:该几何体的主视图
21、以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为324=24cm3答:这个长方体的体积是24cm3故答案为:24点评:考查了由三视图判断几何体,本题要先判断出几何体的形状,然后根据其体积公式进行计算即可8(2015随州)(3分)在ABCD中,ABBC,已知B=30,AB=2,将ABC沿AC翻折至ABC,使点B落在ABCD所在的平面内,连接BD若ABD是直角三角形,则BC的长为4或6考点:翻折变换(折叠问题);平行四边形的性质.分析:在ABCD中,ABBC,要使ABD是直角三角形,有两种情况:BAD=90或ABD=90,画出图形,分类讨论即
22、可解答:解:当BAD=90ABBC时,如图1,AD=BC,BC=BC,AD=BC,ACBD,BAD=90,BGC=90,B=30,AB=2,ABC=30,GC= BC= BC,G是BC的中点,在RTABG中,BG=AB=2=3,BC=6;当ABD=90时,如图2,AD=BC,BC=BC,AD=BC,ACBD,四边形ACDB是等腰梯形,ABD=90,四边形ACDB是矩形,BAC=90,B=30,AB=2,BC=AB=2=4,当BC的长为4或6时,ABD是直角三角形故答案为:4或6点评:本题主要考查了翻折变换的性质,解题的关键是画出图形,发现存在两种情况,进行分类讨论9(2015咸宁)(3分)如图
23、,在平面直角坐标系中,点A的坐标为(0,6),将OAB沿x轴向左平移得到OAB,点A的对应点A落在直线y=x上,则点B与其对应点B间的距离为821教育名师原创作品考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.分析:根据题意确定点A的纵坐标,根据点A落在直线y=x上,求出点A的横坐标,确定OAB沿x轴向左平移的单位长度即可得到答案解答:解:由题意可知,点A移动到点A位置时,纵坐标不变,点A的纵坐标为6,x=6,解得x=8,OAB沿x轴向左平移得到OAB位置,移动了8个单位,点B与其对应点B间的距离为8,故答案为:8点评:本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OA
24、B移动的距离是解题的关键10(2015孝感)(3分)已知圆锥的侧面积等于cm2,母线长10cm,则圆锥的高是 cm考点:圆锥的计算.专题:计算题分析:设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于 圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到2r10=60, 解得r=6,然后根据勾股定理计算圆锥的高解答:解:设圆锥的底面圆的半径为r, 根据题意得2r10=60, 解得r=6, 所以圆锥的高=8(cm) 故答案为8点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面 的周长,扇形的半径等于圆锥的母线长11(2015孝感)(3
25、分)如图,四边形是矩形纸片,对折矩形纸片,使与重合,折痕为;展平后再过点折叠矩形纸片,使点落在上的点,折痕与相交于点;再次展平,连接,延长交于点有如下结论:; ; ;是等边三角形; 为线段上一动点,是的中点,则的最小值是其中正确结论的序号是 考点:几何变换综合题.分析:首先根据EF垂直平分AB,可得AN=BN;然后根据折叠的性质,可得AB=BN, 据此判断出ABN为等边三角形,即可判断出ABN=60首先根据ABN=60,ABM=NBM,求出ABM=NBM=30;然后在RtABM中,根据AB=2,求出AM的大小即可首先根据EFBC,QN是MBG的中位线,可得QN=BG;然后根据BG=BM=,求出
26、QN的长度即可根据ABM=MBN=30,BNM=BAM=90,推得MBG=BMG=BGM=60,即可推得BMG是等边三角形首先根据BMG是等边三角形,点N是MG的中点,判断出BNMG,即可求出BN的大小;然后根据P与Q重合时,PN+PH=PN+PE=EN,据此求出PN+PH的最小值是多少即可解答:解:如图1,连接AN, EF垂直平分AB, AN=BN, 根据折叠的性质,可得 AB=BN, AN=AB=BN ABN为等边三角形 ABN=60,PBN=602=30, 即结论正确; ABN=60,ABM=NBM, ABM=NBM=602=30, AM=, 即结论不正确 EFBC,QN是MBG的中位线
27、, QN=BG; BG=BM=, QN=, 即结论不正确 ABM=MBN=30,BNM=BAM=90, BMG=BNMMBN=9030=60, MBG=ABGABM=9030=60, BGM=1806060=60, MBG=BMG=BGM=60, BMG为等边三角形, 即结论正确 BMG是等边三角形,点N是MG的中点, BNMG, BN=BGsin60=, P与Q重合时,PN+PH的值最小, P是BM的中点,H是BN的中点, PHMG, MGBN, PHBN, 又PEAB, PH=PE, PN+PH=PN+PE=EN, EN=, PN+PH=, PN+PH的最小值是, 即结论正确 故答案为:点
28、评:(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了空间想象能力, 考查了数形结合方法的应用,要熟练掌握(2)此题还考查了等边三角形的判定和性质的应用,以及矩形的性质和应用,要熟练掌握 (3)此题还考查了折叠的性质和应用,以及余弦定理的应用,要熟练掌握三、解答题1(12分)(2015恩施州)矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4www.21-cn-(1)求AD的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A、B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使SPAM=?若存在,求出P
29、点坐标;若不存在,请说明理由考点:几何变换综合题.专题:综合题分析:(1)作BPAD于P,BQMC于Q,如图1,根据旋转的性质得AB=AO=5,BE=OC=AD,ABE=90,利用等角的余角相等得ABP=MBQ,可证明RtABPRtMBQ得到=,设BQ=PD=x,AP=y,则AD=x+y,所以BM=x+y2,利用比例性质得到PBMQ=xy,而PBMQ=DQMQ=DM=1,利用完全平方公式和勾股定理得到52y22xy+(x+y2)2x2=1,解得x+y=7,则BM=5,BE=BM+ME=7,所以AD=7;(2)由AB=BM可判断RtABPRtMBQ,则BQ=PD=7AP,MQ=AP,利用勾股定理
30、得到(7MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,则BQ=4,根据三角形面积公式和梯形面积公式,利用S阴影部分=S梯形ABQDSBQM进行计算即可;然后利用待定系数法求直线AM的解析式;(3)先确定B(3,1),然后利用待定系数法求抛物线的解析式;(4)当点P在线段AM的下方的抛物线上时,作PKy轴交AM于K,如图2设P(x,x2x+5),则K(x,x+5),则KP=x2+x,根据三角形面积公式得到(x2+x)7=,解得x1=3,x2=,于是得到此时P点坐标为(3,1)、(,);再求出过点(3,1)与(,)的直线l的解析式为y=x+,则可得到直线l与y轴的交点A的坐标为(0,),
31、所以AA=,然后把直线AM向上平移个单位得到l,直线l与抛物线的交点即为P点,由于A(0,),则直线l的解析式为y=x+,再通过解方程组得P点坐标解答:解:(1)作BPAD于P,BQMC于Q,如图1,矩形AOCD绕顶点A(0,5)逆时针方向旋转得到矩形ABEF,AB=AO=5,BE=OC=AD,ABE=90,PBQ=90,ABP=MBQ,RtABPRtMBQ,=,设BQ=PD=x,AP=y,则AD=x+y,BM=x+y2,=,PBMQ=xy,PBMQ=DQMQ=DM=1,(PBMQ)2=1,即PB22PBMQ+MQ2=1,52y22xy+(x+y2)2x2=1,解得x+y=7,BM=5,BE=
32、BM+ME=5+2=7,AD=7;(2)AB=BM,RtABPRtMBQ,BQ=PD=7AP,MQ=AP,BQ2+MQ2=BM2,(7MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,BQ=73=4,S阴影部分=S梯形ABQDSBQM=(4+7)443=16;设直线AM的解析式为y=kx+b,把A(0,5),M(7,4)代入得,解得,直线AM的解析式为y=x+5;(3)设经过A、B、D三点的抛物线的解析式为y=ax2+bx+c,AP=MQ=3,BP=DQ=4,B(3,1),而A(0,5),D(7,5),解得,经过A、B、D三点的抛物线的解析式为y=x2x+5;(4)存在当点P在线段AM的
33、下方的抛物线上时,作PKy轴交AM于K,如图2,设P(x,x2x+5),则K(x,x+5),KP=x+5(x2x+5)=x2+x,SPAM=,(x2+x)7=,整理得7x246x+75,解得x1=3,x2=,此时P点坐标为(3,1)、(,),求出过点(3,1)与(,)的直线l的解析式为y=x+,则直线l与y轴的交点A的坐标为(0,),AA=5=,把直线AM向上平移个单位得到l,则A(0,),则直线l的解析式为y=x+,解方程组得或,此时P点坐标为(,)或(,),综上所述,点P的坐标为(3,1)、(,)、(,)、(,)点评:本题考查了几何变换综合题:熟练掌握旋转的性质、矩形的性质和三角形全等于相
34、似的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会进行代数式的变形2.(2015黄冈)(14 分)如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将BCD 沿直线CD 折叠,使点B 恰好落在OA边上的点E 处,分别以OC,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.21世纪教育网版权所有(1)求OE 的长;(2)求经过O,D,C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间
35、为t 秒,当t为何值时,DP=DQ;21教育网(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.【出处:21教育名师】考点:二次函数综合题 分析:(1)由折叠的性质可求得CE、CO,在Rt COE 中,由勾股定理可求得OE,设 AD=m ,在RtADE 中,由勾股定理可求得m 的值,可求得D 点坐标,结合C、 O 两点,利 用待定系数法可求得抛物线解析式; (2 )用t 表示出CP 、BP 的长,可证明 DBP DEQ ,可得到BP=EQ , 可求得t 的
36、值; (3 )可设出N 点坐标,分三种情况EN 为对角线,EM 为对角线,EC 为 对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M 点的横 坐标,再代入抛物线解析式可求得M 点的坐标 解答:解:(1)CE=CB=5,CO=AB=4, 在Rt COE 中,OE=3 , 设AD=m ,则DE=BD=4 m , OE=3, AE=5 3=2, 在RtADE 中,由勾股定理可得AD2 +AE2 =DE2 ,即m2 +22 = (4 m )2 , 解得m= , D (,5 ), C (4 ,0 ),O (0,0 ), 设过O、D 、C 三点的抛物线为y=ax(x+4 ), 5= a
37、(+4 ),解得a= , 抛物线解析式为y=x (x+4 )= x2 + x ; (2 )CP=2t , BP=5 2t , 在Rt DBP 和Rt DEQ 中, , Rt DBP Rt DEQ (HL ), BP=EQ , 5 2t=t , t= ; (3 )抛物线的对称为直线x= 2 , 设N(2 ,n ), 又由题意可知C (4 ,0 ),E (0,3 ), 设M (m ,y ), 当EN 为对角线,即四边形ECNM 是平行四边形时, 则线段EN 的中点横坐标为= 1,线段CM 中点横坐标为, EN,CM 互相平分, = 1,解得m=2 , 又M 点在抛物线上, y=x2 + x=16
38、, M (2 ,16); 当EM 为对角线,即四边形ECMN 是平行四边形时, 则线段EM 的中点横坐标为,线段CN 中点横坐标为 = 3, EN,CM 互相平分, = 3,解得m= 6, 又M 点在抛物线上, y= (6 )2 + (6 )=16 , M (6,16); 当CE 为对角线,即四边形EMCN 是平行四边形时, 则M 为抛物线的顶点,即M (2 , ) 综上可知,存在满足条件的点M,其坐标为(2 ,16)或(6,16)或(2 , ) 点评:本题主要考查二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、折 叠的性质、平行四边形的性质等知识点在(1)中求得D 点坐标是解题的
39、关键,在 (2 )中证得全等,得到关于t 的方程是解题的关键,在(3 )中注意分类讨论思想 的应用本题考查知识点较多,综合性较强,难度适中 3(9分)(2015黄石)在AOB中,C,D分别是OA,OB边上的点,将OCD绕点O顺时针旋转到OCD(1)如图1,若AOB=90,OA=OB,C,D分别为OA,OB的中点,证明:AC=BD;ACBD;(2)如图2,若AOB为任意三角形且AOB=,CDAB,AC与BD交于点E,猜想AEB=是否成立?请说明理由考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.分析:(1)由旋转的性质得出OC=OC,OD=OD,AOC=BOD,证出OC=OD,
40、由SAS证明AOCBOD,得出对应边相等即可;由全等三角形的性质得出OAC=OBD,又由对顶角相等和三角形内角和定理得出BEA=90,即可得出结论;(2)由旋转的性质得出OC=OC,OD=OD,AOC=BOD,由平行线得出比例式,得出,证明AOCBOD,得出OAC=OBD再由对顶角相等和三角形内角和定理即可得出AEB=解答:(1)证明:OCD旋转到OCD,OC=OC,OD=OD,AOC=BOD,OA=OB,C、D为OA、OB的中点,OC=OD,OC=OD,在AOC和BOD中,AOCBOD(SAS),AC=BD;延长AC交BD于E,交BO于F,如图1所示:AOCBOD,OAC=OBD,又AFO=
41、BFE,OAC+AFO=90,OBD+BFE=90,BEA=90,ACBD;(2)解:AEB=成立,理由如下:如图2所示:OCD旋转到OCD,OC=OC,OD=OD,AOC=BOD,CDAB,又AOC=BOD,AOCBOD,OAC=OBD,又AFO=BFE,AEB=AOB=点评:本题考查了旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键4(2015荆州)(12分)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,BCD=60,点E是AB上一点,AE=3EB,P过D
42、,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点(1)求抛物线的解析式;(2)求证:ED是P的切线;(3)若将ADE绕点D逆时针旋转90,E点的对应点E会落在抛物线y=ax2+bx+c上吗?请说明理由;21*cnjy*com(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由考点:二次函数综合题专题:综合题分析:(1)先确定B(4,0),再在RtOCD中利用OCD的正切求出OD=2,D (0,2),然后利用交点式求抛物线的解析式; (2)先计算出CD=2OC=4,再根据平行四边形的性质得
43、AB=CD=4,ABCD, A=BCD=60,AD=BC=6,则由AE=3BE得到AE=3,接着计算=,加上 DAE=DCB,则可判定AEDCOD,得到ADE=CDO,而 ADE+ODE=90则CDO+ODE=90,再利用圆周角定理得到CD为P的直 径,于是根据切线的判定定理得到ED是P的切线 (3)由AEDCOD,根据相似比计算出DE=3,由于CDE=90,DEDC, 再根据旋转的性质得E点的对应点E在射线DC上,而点C、D在抛物线上,于是 可判断点E不能在抛物线上; (4)利用配方得到y=(x+1)2+,则M(1,),且B(4,0),D (0,2),根据平行四边形的性质和点平移的规律,利用
44、分类讨论的方法确定N 点坐标解答:解:(1)C(2,0),BC=6, B(4,0), 在RtOCD中,tanOCD=, OD=2tan60=2, D(0,2), 设抛物线的解析式为y=a(x+4)(x2), 把D(0,2)代入得a4(2)=2,解得a=, 抛物线的解析式为y=(x+4)(x2)=x2x+2; (2)在RtOCD中,CD=2OC=4, 四边形ABCD为平行四边形, AB=CD=4,ABCD,A=BCD=60,AD=BC=6, AE=3BE, AE=3, =,=, =, 而DAE=DCB, AEDCOD, ADE=CDO, 而ADE+ODE=90 CDO+ODE=90, CDDE,
45、 DOC=90, CD为P的直径, ED是P的切线; (3)E点的对应点E不会落在抛物线y=ax2+bx+c上理由如下: AEDCOD, =,即=,解得DE=3, CDE=90,DEDC, ADE绕点D逆时针旋转90,E点的对应点E在射线DC上, 而点C、D在抛物线上, 点E不能在抛物线上; (4)存在 y=x2x+2=(x+1)2+ M(1,), 而B(4,0),D(0,2), 如图2, 当BM为平行四边形BDMN的对角线时,点D向左平移4个单位,再向下平移2 个单位得到点B,则点M(1,)向左平移4个单位,再向下平移2个单 位得到点N1(5,); 当DM为平行四边形BDMN的对角线时,点B向右平移3个单位,再向上平移 个单位得到点M,则点D(0,2)向右平移3个单位,再向上平移个单 位得到点N2(3,); 当BD为平行四边形BDMN的对角线时,点M向左平移3个单位,再向下平移 个单位得到点B,则点D(0,2)向右平移3个单位,再向下平移个单位 得到点N3(3,), 综上所述,点N的坐标为(5,)、(3,)、(3,)点评:考查了二次函数综合题:熟练掌握用待定系数法求二次函数解析式、二次函数的性 质和相似三角形的判定与性质;掌握平行四边形的性质点平移的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年废旧材料销售框架合同
- 文书模板-装卸货高空作业合同
- 2024年建筑工程分包合同
- 玫瑰的课件教学课件
- 2024年人工智能教育平台开发合同
- 2024医疗设备维修公司关于超声波机器保修服务合同
- 停电停气应急预案(6篇)
- 2024年建筑工程机电安装分包协议
- 2024年库房租赁与无人机测试存放合同
- 2024年专业咨询合作协议
- 2024年公安智能外呼项目合同
- 河南省信阳市2024-2025学年七年级上学期期中历史试题(含答案)
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 2024年学校食堂管理工作计划(六篇)
- 体育赛事组织服务协议
- 天车工竞赛考核题
- 民办非企业单位理事会制度
- 临床输血的护理课件
- 民生银行在线测评真题
- 人教版(PEP)小学六年级英语上册全册教案
- 第二章 旅游线路类型及设计原则
评论
0/150
提交评论