72线性变换的运算ppt课件_第1页
72线性变换的运算ppt课件_第2页
72线性变换的运算ppt课件_第3页
72线性变换的运算ppt课件_第4页
72线性变换的运算ppt课件_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第1页共24页第2页共24页设为线性空间设为线性空间V的两个线性变换,定义它们的两个线性变换,定义它们,A B事实上,事实上,()()( ()( ( )() ABA BA BB的的乘积乘积 为:为: ,V ABA BAB 则则 也是也是V的线性变换的线性变换.AB( ( )( ( )()( )()( ), A BA BABAB()()( ()( )( ( )()( )kkkkk ABA BABA BAB第3页共24页(1)满足结合律:满足结合律: AB CA BC(2),E为单位变换为单位变换 EEAAA(3)交换律一般不成立,即一般地,交换律一般不成立,即一般地,. ABBA第4页共24页例

2、例1. 线性空间中,线性变换线性空间中,线性变换 R x D fxfx 0,xDJfxDf t dtfx 00 xJDfxJfxft dtfxf 而,而, .DJJD 0 xJfxf t dt 即即.DJE 第5页共24页(),XAX A例例2. 设设A、B为两个取定的矩阵,定义变换为两个取定的矩阵,定义变换n nP 则皆为的线性变换,且对有则皆为的线性变换,且对有,A Bn nP ,n nXP ()()( ()()(),XXXBA XBAXBABA BA()()( ()()().XXAXAX BAXBBAB AB(),XXB Bn nXP .ABBA第6页共24页则则 也是也是V的线性变换的

3、线性变换. AB设为线性空间设为线性空间V的两个线性变换,定义它们的两个线性变换,定义它们,A B ,V ABAB的的和和 为:为: AB事实上,事实上,()()()() ABAB( )()( )()()( )()(), AABBABAB()()()()( )( )kkkkk ABABAB( )( )()( ).kk ABAB第7页共24页(3) 0为零变换为零变换.00, AAA(4)乘法对加法满足左、右分配律:乘法对加法满足左、右分配律: A BCABAC BC ABACA(1)满足交换律:)满足交换律:ABBA(2)满足结合律:)满足结合律: ABCAB+C第8页共24页 ,V AA设为

4、线性空间设为线性空间V的线性变换,定义变换为:的线性变换,定义变换为:A A则则 也为也为V的线性变换,称之为的的线性变换,称之为的负变换负变换. AA注:注:()0 AA第9页共24页 ,kkV AA的的数量乘积数量乘积 为:为:kA则则 也是也是V的线性变换的线性变换.kA设为线性空间设为线性空间V的线性变换,定义的线性变换,定义 k 与与A,kP A第10页共24页(1) ()()klk l AA(2) ()klklAAA(3)()kkk ABAB(4) 1 AA2基本性质基本性质注:注:线性空间线性空间V上的全体线性变换所成集合对于上的全体线性变换所成集合对于线性变换的加法与数量乘法构

5、成数域线性变换的加法与数量乘法构成数域P上的一个线性上的一个线性空间,记作空间,记作( ).L V第11页共24页EABBA则称则称为可逆变换,称为的逆变换,记作为可逆变换,称为的逆变换,记作AAB1. A设为线性空间设为线性空间V的线性变换,若有的线性变换,若有V的变换使的变换使AB(1) 可逆变换的逆变换也是可逆变换的逆变换也是V的线性变换的线性变换.A1 A第12页共24页 1111 AAAAAA 111AA AA 11 AA证:对证:对 ,VkP 111 AAAA 11111kkk AAAAAA A 1111kkk AAAAA是是V的线性变换的线性变换.1 A第13页共24页(2) 线

6、性变换可逆线性变换是一一对应线性变换可逆线性变换是一一对应.AA证:证:设为线性空间设为线性空间V上可逆线性变换上可逆线性变换.A任取任取 若若 则有则有( )( ), AA,V 111()( )( ( )( () AAAAAA1()( ). A A A为单射为单射.其次,对令则且其次,对令则且,V 1( ), A,V 11( )( )( ). AA AAA A为满射为满射.故为一一对应故为一一对应.A第14页共24页若为一一对应,易证的逆映射也为若为一一对应,易证的逆映射也为VAAB的线性变换,且的线性变换,且.E ABBA故可逆,故可逆,.A1 BA线性变换,则可逆当且仅当线性变换,则可逆

7、当且仅当A12(),(),()n AAA(3) 设是线性空间设是线性空间V的一组基,为的一组基,为V的的A12,n 线性无关线性无关.证:证: 设设1122()()()0.nnkkk AAA于是于是1 122()0nnkkk A因为可逆,由因为可逆,由(2),为单射,又,为单射,又A(0)0, AA第15页共24页11220nnkkk 而线性无关,所以而线性无关,所以12,n 0,1,2, .ikin 故线性无关故线性无关.12(),(),()n AAA若线性无关,则它若线性无关,则它12(),(),()n AAA也为也为V的一组基的一组基.1122()()(),nnkkk AAA因而,对有因

8、而,对有,V 即有即有1122().nnkkk A A为满射为满射.第16页共24页12(),(),()n AAA线性无关线性无关,1,2, ,iiabin 若若 则有则有( )( ), AA其次,任取其次,任取 设设,V 11,nniiiiiiab 11()(),nniiiiiiab AA即即. 由由(2), 为可逆变换为可逆变换.A故为一一对应故为一一对应.A从而,为单射从而,为单射.A第17页共24页(4) 可逆线性变换把线性无关的向量组变成线性无关可逆线性变换把线性无关的向量组变成线性无关的向量组的向量组.线性无关线性无关.若若 11220.rrkkkAAA证:设为线性空间证:设为线性

9、空间V的可逆变换,的可逆变换,A12,rV 则有,则有,1122()0rrkkkA又可逆,于是是一一对应,且又可逆,于是是一一对应,且 (0)0 AAA11220rrkkk故故 线性无关线性无关.12(),(),()r AAA由由 线性无关,有线性无关,有120.rkkk 12,r 第18页共24页,nn AAA当时,规定(单位变换)当时,规定(单位变换).0n 0E A设为线性空间设为线性空间V的线性变换,的线性变换,n为自然数,定义为自然数,定义A称之为的称之为的n次幂次幂. A第19页共24页 易证易证 ,0nm nmnmmnm n AA AAA 1nn AA 当为可逆变换时,定义的负整

10、数幂为当为可逆变换时,定义的负整数幂为AA 一般地,一般地, .nnn ABA B第20页共24页设设 10 ,mmfxa xa xaP x A为为V的一个线性变换,则的一个线性变换,则10()mmfaaa E AAA多项式多项式.也是也是V的一个线性变换,称的一个线性变换,称 为线性变换的为线性变换的A()f A第21页共24页 ,h xfxg xp xfx g x 在在 中,若中,若 P x则有,则有, ,hfg AAA fggf AAAA即线性变换的多项式满足加法和乘法交换律即线性变换的多项式满足加法和乘法交换律. pfg AAA 对有对有( ), ( ) ,f xg xP x fggf AAAA第22页共24页证明:证明:1,1.kkkkk A BBAA设为线性变换,若设为线性变换,若,A B,E ABBA证:对证:对k作数学归纳法作数学归纳法.当当k=2时,若时,若,E ABBA对对两端左乘,得两端左乘,得A2, A BABAA对对两端右乘,得两端右乘,得A2,ABABAA上两式相加,即得上两式相加,即得222 122. A BBAAA第23页共24页112(1).kkkk ABBAA对对两端左乘,得两端左乘,得A对对两端右乘两端右乘 得得1,k A11(1),kkkk A BABAA11,kkk ABABAA,得,得1.k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论