模糊集合及其运算教材)_第1页
模糊集合及其运算教材)_第2页
模糊集合及其运算教材)_第3页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第 1 章 模糊集合及其运算 (教材第 2 章)1.1 模糊集合创立背景1. 不兼容原理:一个系统的复杂性增大时,我们使它精确化的能力将减小,在达到一定阀值时复杂性与精确性相排斥,即高复杂性与高精度不兼容。图 1.1 不兼容原理示意图图 1.2 人脑、电脑与大系统2. Zadeh 研究大系统遇到的问题他经常徘徊于人脑思维大系统计算机三者之间, 人脑对复杂大系统中许 多模糊概念与模糊信息不是用是、 非二值逻辑, 而是用模糊逻辑。 线性的计算机 是以二值逻辑 0,1 为基础,不能处理模糊信息,怎么办?为使大脑能像人脑那样处理模糊信息,必须将 0,1 扩展到0, 1 闭区间, 于是他在 1965 年

2、发表了开创性论文“Fuzzy sets ”。举例解释模糊性与随机性两个概念的差异。1.2 经典集合及其运算1. 复习经典集合理论定义: 基于某种属性的、确定的、彼此可区别的事物全体。论域: 研究对象的全体称为论域(全域、全集、空间、话题)元素与集合之间的关系: 属于与不属于集合之间关系: 包含与相等集合的基本运算: 并、交、补运算集合的三种基本形式如下:定义式: A B x | x A 或 x B (只用符合字母) 描述式:(只用文字)由属于一个集合或另一个集合的元素构成的集合称为 这两个集合的并文氏图:(只用图)集合的直积(叉积,笛卡尔积) :两个集合 A,B 的直积: A B (x, y)

3、 | x A 且 y B注意几点:(1)序偶不能颠倒顺序( x, y ) (y, x),因此AB BA;(2) 直积可推广到 n 个集合;(3) 当 R 为 实 数 集 , 即 R=x|- x + , R R=(x, y)|- x+ ,- y+ 称 R R=R2 为二维欧氏空间。2. 映射与关系(1) 映射 f :xy;(2) 关系:集合 X Y直积的一个子集 R称为 X到 Y的二元关系,简称关系;(3) 映射是关系的特例,因为 f:xy 显然(x, y)|y=f(x)XY。Yy(因变量)y=f(x)集合)映射 f :XYXxYy0X(集合)0x 自变量图 1.3 函数关系是映射的特例3. 集

4、合性质幂等律、交换律、结合律、分配律、吸收律、同一律、复原律、互补律、对偶律4. 集合的表示:除描述法,列举法,递推公式法之外,还有特征函数表示法1 x A集合 A的特征函数定义为 A (x) 0 x AA(x)1图 1.4 集合 A 的特征函数特征函数的性质:(1) A (x) 1 A (x)(2)A B (x) maxA (x), B (x)(3)A B (x) minA (x), B (x)1.3 模糊集合的定义及运算(1) 概念的内涵与外延内涵:一个概念中包含那些区别其它概念的全体本质属性称概念的内涵,概 念的内涵就是集合的定义。外延:符合某概念的对象的全体,称为概念的外沿,概念的外延

5、就是指集合 的所有元素U例如,高、图 1.5 模糊集合 A 的隶属函数给定论域 U到0 ,1闭区间的映射。: U 0,1A(u) 称为 u 对 A 隶属度;u A(u) 都确定一个模糊子集 A ; A称为 A 的隶属度函数; 在不至于混淆的情况下,用 A(u) 表示 A(u) 。(4) 模糊集合的表示 U 为有限离散的情况Zadeh 表示法: A A(u1) A(u2)A(un )u1u2un序偶表示法: A ( u1, A(u1),( u2 , A(u2 ),(un , A(un )向量法: A (A(u1), A(u2),A(un)注意:隶属度为 0 的元素应保留综合法:A (A(u1),

6、A(u2),A(un)u1u2un U 为连续的情况A(u)Uu(5) 模糊集合的运算 包含、相等的概念同普通集合 并、交、补的运算A B (u)maxA(u),B (u)A(u),B(u)A B (u)minA(u),B (u)A(u),B(u)Ac(u) 1 A(u)AB1图 1.6 模糊集合的并、交示意图 模糊集合的代数运算代数积: A B A B A BA B AB 1代数和: A B1 AB 1(6) 模糊集合的运算性质不满足互补律,其余 8 条同普通集合的运算性质相同。1.4 模糊集合与经典集合的联系(1) 截集: A u | A(u) ,0 1 称 A 为 A的 截集强截集: A u| A (u) ,0 1(2) 分解定理0,1 A ,其中 A (x) 0xAx A图 1.7 分解定理示意图 分解定理提供了用经典集合构造模糊集合的可能性, 它是联系模糊数学 与经典数学的纽带。(3) 扩张原则: f :xy可扩展为f :A f(A) f 称 f 的扩展 规定在扩张中保持它的隶属度函数值不变, 扩张原则目的是把普通数学方法 扩展到模糊集合运算中。1.5 隶属函数(1) 确定隶属函数:主观性与客观性的统一(2) 隶属函数确定方法 模糊统计法:介绍张南伦老师对 “年轻”“ 中年”隶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论